Project description:Cultivated eggplant XN, a waterlogging-tolerant variety, were treated with waterlogging stress, and the root of XN eggplant were harvested at the time point of 0, 6, 12, and 24 h post treatment ,relatively. iTRAQ-based quantitative proteomics was performed to analyze protein dynamics in eggplant root.
2023-07-20 | PXD041747 | Pride
Project description:gene expression of eggplant seeding under picloram treatment
| PRJNA1114876 | ENA
Project description:Fungus diversity of Alternanthera sessilis under Cd treatment
| PRJNA1026056 | ENA
Project description:Microbial diversity of Alternanthera sessilis under Cd treatment
Project description:The total RNA were extracted from tissues of roots from several plants of Panax notoginseng under CK and Cd stress treatment by using TRIzol reagent (Invitrogen) according to the manufacturer's instructions. The purified PCR product was sequenced using Illumina Genome Analyzer II. The qualified reads were used to study of Panax notoginseng transcriptome under CK and Cd stress treatment.
Project description:BACKGROUND: Western flower thrips are considered the major insect pest of horticultural crops worldwide, causing economic and yield loss to Solanaceae crops. The eggplant (Solanum melongena L.) resistance against thrips remains largely unexplored. This work aims to identify thrips-resistant eggplants and dissect the molecular mechanisms underlying this resistance using the integrated metabolomic and transcriptomic analyses of thrips-resistant and -susceptible cultivars. RESULTS: We developed a micro-cage thrips bioassay to identify thrips-resistant eggplant cultivars, and highly resistant cultivars were identified from wild eggplant relatives. Metabolomic profiles of thrips-resistant and -susceptible eggplant were compared using the gas chromatography-mass spectrometry (GC-MS)-based approach, resulting in the identification of a higher amount of quinic acid in thrips-resistant eggplant compared to the thrips-susceptible plant. RNA-sequencing analysis identified differentially expressed genes (DEGs) by comparing genome-wide gene expression changes between thrips-resistant and -susceptible eggplants. Consistent with metabolomic analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs revealed that the starch and sucrose metabolic pathway in which quinic acid is a metabolic by-product was highly enriched. External application of quinic acid enhances the resistance of susceptible eggplant to thrips. CONCLUSION: Our results showed that quinic acid plays a key role in the resistance to thrips. These findings highlight a potential application of quinic acid as a biocontrol agent to manage thrips and expand our knowledge to breed thrips-resistant eggplant.
Project description:Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis 1, cardiovascular disease remains the leading cause of death worldwide 2. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response 3 4, we tested the therapeutic potential of increasing cholesterol solubility in experimental atherogenesis. Here we show that treatment of murine atherosclerosis with the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that solubilizes lipophilic substances, reduced atherosclerotic plaque size, cholesterol crystal load and promoted plaque regression even under continuing Western diet. CD solubilized CCs and promoted cholesterylester and oxysterol production in macrophages leading to liver X receptor (LXR)-mediated transcriptional reprogramming. CD increased cholesterol efflux from macrophages and substantially augmented reverse cholesterol transport in vivo. Furthermore, CD reduced proinflammatory cytokines in vivo and decreased macrophage responsiveness towards TLR and inflammasome activation. Since CD treatment in humans is safe and CD beneficially affects key pathogenetic factors in atherogenesis it may thus be used clinically to prevent or treat human atherosclerosis .
Project description:Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis 1, cardiovascular disease remains the leading cause of death worldwide 2. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response 3 4, we tested the therapeutic potential of increasing cholesterol solubility in experimental atherogenesis. Here we show that treatment of murine atherosclerosis with the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that solubilizes lipophilic substances, reduced atherosclerotic plaque size, cholesterol crystal load and promoted plaque regression even under continuing Western diet. CD solubilized CCs and promoted cholesterylester and oxysterol production in macrophages leading to liver X receptor (LXR)-mediated transcriptional reprogramming. CD increased cholesterol efflux from macrophages and substantially augmented reverse cholesterol transport in vivo. Furthermore, CD reduced proinflammatory cytokines in vivo and decreased macrophage responsiveness towards TLR and inflammasome activation. Since CD treatment in humans is safe and CD beneficially affects key pathogenetic factors in atherogenesis it may thus be used clinically to prevent or treat human atherosclerosis .
Project description:Transcriptome analysis of Eggplant cv. PPL during fruit development at 0, 5, 10, 20 and 50 dpa. Eggplant is third most important solanaceae crop species after potato and tomato. It is a versatile crop adapted to different agro-climatic regions and can be grown throughout the year. Unripe eggplant fruit is consumed as cooked vegetable in various ways. It is low in calories and fats, contains mostly water, some protein, fibre and carbohydrates. To decipher molecular mechanisms involved in fruit development eggplant fruit were collected at 0, 5, 10, 20 and 50 dpa and gene expression profiles were analyzed using Affymetrix tomato GeneChip Genome array. Eggplant plants were was grown under controlled conditions in glasshouse. Flowers were hand-pollinated at anthesis and samples were collected at 0, 5, 10, 20 and 50 days post anthesis (dpa). Total RNA was isolated using SpectrumTM Plant Total RNA kit (Sigma, USA) according to the manufacturerM-bM-^@M-^Ys protocol. Affymetrix tomato GeneChip Genome array (Affymetrix, USA) having 10,000 probe sets was used for transcriptome analysis. Three biological replicates were maintained to test the reproducibility and quality of the chip hybridization. cDNA labeling, array hybridization, staining and washing procedures were carried out as described in the Affymetrix protocols. CEL files having estimated probe intensity values were analyzed with GeneSpring GX-11.5 software (Agilent Technologies, USA) to get differentially expressed transcripts. The Robust Multiarray Average (RMA) algorithm was used for the back ground correction, quantile normalization and median polished probe set summarization to generate single expression value for each probe set. Normalized expression values were log2-transformed and differential expression analysis was performed using unpaired t-test. The p-values were corrected by applying the false discovery rate (FDR) correction (Benjamini and Hochberg, 2000).
Project description:Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Since cholesterol retention and cholesterol crystals in arterial walls are key pathogenetic factors for atherogenesis, we assessed the therapeutic potential of increasing cholesterol solubility in vivo. Here we show that treatment of murine atherosclerosis with the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that solubilizes lipophilic substances, reduced atherosclerotic plaque size, cholesterol crystal (CC) load and promoted plaque regression even under continuing Western diet. CD solubilized CC and promoted cholesterylester and oxysterol production in macrophages leading to liver X receptor-mediated transcriptional reprogramming with increased cholesterol efflux and decreased inflammation. CD treatment may thus be used to increase cholesterol solubility and clearance to prevent or treat atherosclerosis.