Project description:Regulatory small RNAs (sRNAs) represent a major class of regulatory molecules that play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been primarily investigated in a few model organisms and little is known about the dynamics of sRNA synthesis in natural environments, and the roles of these short transcripts at the community level. Analyzing the metatranscriptome of a model extremophilic community inhabiting halite nodules (salt rocks) from the Atacama Desert, sampled over two years with different weather conditions, with SnapT – a new sRNA annotation pipeline – we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed.
Project description:In this study, microarrays were used to investigate the larval cod transcriptome response to zooplankton supplementation in the diet.
Project description:Genomic DNA extracted from two different Photobacterium profundum strains: SS9 strain (completely sequenced and used to made the microarray) and DSJ4 strain were labeled with Cy3 and Cy5 fluorophores and competitively hybridized on the microarray built on the basis of the SS9 strain genomic sequence. Aim: the identification of the genomic regions absent in the DSJ4 strain with respect to the SS9 strain. The SS9 strain was isolated from the Sulu Trench and display an optimum growth at 28 MPa (2800 metres of depth). The DSJ4 strain was recovered from a sediment sample obtained from the Ryukyu Trench (Japan) at a depth of 5110 m and displays an optimum growth at 10 MPa (but shows no significant change in growth at pressure up to 50 MPa).
Project description:Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. In particular, trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. Copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis along with shifts in its microbiota. Unexpectedly, very few genes were differentially expressed in copper-treated copepods compared to controls, with most of the reported differences involving genes upregulated in males compared to females. In contrast, copper increased the taxonomic diversity indices of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in copper-treated copepods concurred with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, and Alkanindiges) and a higher relative abundance of the copA gene encoding a periplasmic inducible multi-copper oxidase. Overall, these results revealed very contrasting responses of E. affinis and its microbiota to copper exposure. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines here the need to follow the microbial component during the evaluation of the vulnerability of the zooplankton to the metallic stress.