Project description:Huntington’s disease (HD) is a fatal neurodegenerative disorder that is caused by the expansion of CAG repeats in the HTT gene, which results in a long polyglutamine (polyQ) tract in the huntingtin protein (HTT). In this study, we searched for networks of deregulated RNAs that contribute to initial transcriptional changes in HD neuronal cells and HTT-deficient cells. We used RNA-seq (including small RNA sequencing) to analyze a set of isogenic, human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs); and we observed numerous changes in gene expression and substantial dysregulation of miRNA expression in HD and HTT-knockout (HTT-KO) cell lines. The gene set that was upregulated in both HD and HTT-KO cells was enriched in genes that are associated with DNA binding and regulation of transcription. For both of these models, we confirmed the substantial upregulation of the transcription factors (TFs) TWIST1, SIX1, TBX1, TBX15, MSX2, MEOX2 and FOXD1 in NSCs and medium spiny neuron (MSN)-like cells. Moreover, we identified miRNAs that were consistently deregulated in HD and HTT-KO NSCs and MSN-like cells, including miR-214, miR-199, and miR-9. We suggest that these miRNAs function in the network that regulates TWIST1 and HTT expression via regulatory feed-forward loop (FFL) in HD. Additionally, we reported that the expression of selected TFs and miRNAs tended to progressively change during the neural differentiation of HD cells, what was not observed in HTT-KO model. Based on comparing the HD and HTT-KO cell lines, we propose that early transcriptional deregulation in HD is largely caused by loss of HTT function.
Project description:Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington’s disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT’s normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT’s association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that co-purify with a HTT N-terminal fragment under basal conditions. Co-purification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory upregulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.
Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by abnormal expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin gene (HTT). The resultant mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin protein (HTT) levels alleviates HD-associated motor and neuropathological abnormalities, confirming the importance of huntingtin-lowering as a therapeutic approach. Several therapies in development repress HTT transcription or translation, including antisense oligonucleotides, virally-delivered microRNAs, and zinc finger protein transcription factors. However, they all require invasive procedures to reach the central nervous system (CNS) and do not distribute evenly to target areas in the brain. Systemically distributed therapeutics are needed to address the CNS and peripheral dysfunctions associated with HD. Here we report the discovery of small molecule splicing modifiers that lower HTT expression by selective modulation of pre-mRNA splicing. These compounds promote the inclusion of a pseudoexon containing a premature termination codon triggering HTT mRNA degradation and a reduction of HTT protein levels in vitro and in vivo. These orally bioavailable small molecules represent a non-invasive treatment option for HD and our findings support their continued development for the treatment of HD.
Project description:Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by abnormal expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin gene (HTT). The resultant mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin protein (HTT) levels alleviates HD-associated motor and neuropathological abnormalities, confirming the importance of huntingtin-lowering as a therapeutic approach. Several therapies in development repress HTT transcription or translation, including antisense oligonucleotides, virally-delivered microRNAs, and zinc finger protein transcription factors. However, they all require invasive procedures to reach the central nervous system (CNS) and do not distribute evenly to target areas in the brain. Systemically distributed therapeutics are needed to address the CNS and peripheral dysfunctions associated with HD. Here we report the discovery of small molecule splicing modifiers that lower HTT expression by selective modulation of pre-mRNA splicing. These compounds promote the inclusion of a pseudoexon containing a premature termination codon triggering HTT mRNA degradation and a reduction of HTT protein levels in vitro and in vivo. These orally bioavailable small molecules represent a non-invasive treatment option for HD and our findings support their continued development for the treatment of HD.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.
Project description:BackgroundMurine kobuviruses (MuKV) are newly recognized picornaviruses first detected in murine rodents in the USA in 2011. Little information on MuKV epidemiology in murine rodents is available. Therefore, we conducted a survey of the prevalence and genomic characteristics of rat kobuvirus in Guangdong, China.ResultsFecal samples from 223 rats (Rattus norvegicus) were collected from Guangdong and kobuviruses were detected in 12.6% (28) of samples. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions showed that rat kobuvirus obtained in this study were genetically closely related to those of rat/mouse kobuvirus reported in other geographical areas. Two near full-length rat kobuvirus genomes (MM33, GZ85) were acquired and phylogenetic analysis of these revealed that they shared very high nucleotide/amino acids identity with one another (95.4%/99.4%) and a sewage-derived sequence (86.9%/93.5% and 87.5%/93.7%, respectively). Comparison with original Aichivirus A strains, such human kobuvirus, revealed amino acid identity values of approximately 80%.ConclusionOur findings indicate that rat kobuvirus have distinctive genetic characteristics from other Aichivirus A viruses. Additionally, rat kobuvirus may spread via sewage.
Project description:Post-translational modifications (PTMs) of proteins regulate various cellular processes. PTMs of polyglutamine-expanded huntingtin (Htt) protein, causative of Huntington’s disease (HD), are likely modulators of HD pathogenesis. Previous studies have identified and characterized several PTMs on exogenously expressed Htt fragments, however none of these studies were designed to systematically characterize PTMs on the endogenous full-length Htt protein.We found that full-length endogenous Htt, immunoprecipitated from HD knock-in mouse and human post mortem brain, is suitable for detection of PTMs by mass spectrometry. Using label-free mass spectrometry, we identified around 40 PTMs, of which half are novel. These findings will be instrumental in the further assembling the Htt PTM framework, and validate PTMs of Htt as promising therapeutic targets for HD.