Project description:Multiomics analysis demonstrated the distinct expression profile of active and inactive keloids. Clinically, these findings may provide the future appropriate directions for treatment of keloids depending on their activity and characteristics.
Project description:To uncover the underlying pathophysiology of keloids, we used two technologies, single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST). we focused on the molecular signature of keloids. In this study, we provide the comprehensive transcriptomic atlas of keloids and its matched spatial information, essential to understanding intercellular crosstalk in the skin microenvironments.
Project description:Keloids represent a fibrotic disorder characterized by the excessive deposition of extracellular matrix (ECM). However, the mechanisms by which ECM deposition in keloids is regulated remain elusive. Here, we found that the expression of both TWEAK and its cognate receptor Fn14 was significantly downregulated in keloids and that TWEAK/Fn14 signaling repressed the expression of ECM-related genes in keloid fibroblasts. The IRF1 gene was essential for this repression, and the TWEAK/Fn14 downstream transcription factor P65 directly bound to the promoter of the IRF1 gene and induced its expression. Furthermore, in keloid patients, the expression of TWEAK and Fn14 was negatively correlated with that of ECM genes and positively correlated with that of IRF1. These observations indicate that relief of TWEAK/Fn14/IRF1-mediated ECM deposition repression contributes to keloid pathogenesis, and the identified mechanism and related molecules provide potential targets for keloid treatment in the future.
Project description:Background:Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. Objective: Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. Methods: In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. Results: By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. Conclusions: Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Project description:Background:Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. Objective: Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. Methods: In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. Results: By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. Conclusions: Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Project description:Background:Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. Objective: Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. Methods: In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. Results: By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. Conclusions: Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Project description:Keloids are reactive or spontaneous fibroproliferative dermal tumors characterized by the exaggerated and uncontrolled accumulation of extracellular collagen. Current approaches to mitigate keloidogenesis are largely procedural in nature. However, a better understanding of its biological drivers may lead to novel targeted treatments for keloids. Through whole-genome expression analysis, we found that a HIF-1α transcriptional footprint is preferentially upregulated (activation score=2.024; p=1.05E-19) in keloid fibroblasts (KFs) compared to normal dermal fibroblasts (NFs). We verified that HIF-1α protein is more strongly expressed in keloid specimens compared to normal skin (p=0.035) and that hypoxia (1% O2) leads to increased collagen, especially in the extracellular compartment. Collagen levels were uniformly reduced by selective HIF-1α inhibitor CAY10585. Our results indicate that collagen secretion may be intimately linked to a hypoxic microenvironment within keloid tumors and that HIF-1α blockade could be a novel avenue of treatment for these tumors.