Project description:Nanostring miRNA Array on postnatal 0 day mouse skeletal muscle For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:To investigate microRNAs related to mitochondria biogenesis in skeletal muscle, microRNA expressions during skeletal muscle differentiation and exercise were analyzed in vivo and in vitro.
Project description:To investigate microRNAs related to mitochondria biogenesis in skeletal muscle, microRNA expressions during skeletal muscle differentiation and exercise were analyzed in vivo and in vitro. Murine skeletal muscle cell (C2C12) were assigned to undifferentiated, differentiated, and passively stretched (exercise mimicked). C57BL/6S mice were assigned to resting, acute exercise (1day), and chronic exercise (7days). Low molecular weight RNA (< 200 nucleotides) was isolated from C2C12 cell or tibialis anterior muscle of mice and hybridized to Ncode microRNA microarrays. The experiment was performed using a loop design for the data analysis.
Project description:Compare miRNA expression profiles in epididymal white adipose tissue (WAT), interscapular brown adipose tissue (BAT) and skeletal muscle from wild-type C57BL/6J mice
Project description:To identify changes in skeletal muscle microRNA expression after exercise and associate the identified microRNAs with mRNA and protein expression to disease-specific pathways in polymyositis and dermatomyositis
Project description:The current study aimed to address the hypothesis that programmed expression of key miRNAs in skeletal muscle mediates the development of insulin resistance, and consequently long-term health. We thus examined microRNA signatures in skeletal muscle of programmed insulin resistant rats offspring from high fat-fed dams vs control offspring from chow fed dams.
Project description:The current study aimed to address the hypothesis that programmed expression of key miRNAs in skeletal muscle mediates the development of insulin resistance, and consequently long-term health. We thus examined microRNA signatures in skeletal muscle of unmedicated newly diagnosed human pre-diabetics and type 2 diabetics.
Project description:The current study aimed to address the hypothesis that programmed expression of key miRNAs in skeletal muscle mediates the development of insulin resistance, and consequently long-term health. We thus examined microRNA signatures in skeletal muscle of programmed insulin resistant rats offspring from high fat-fed dams vs control offspring from chow fed dams. Skeletal muscle (soleus) was collected from the hind limb of 1 year old male offspring (6 from control dams, 6 from high fat-fed dams) . Ramaciotti Centre for Genomics (UNSW, sydney, Australia)
Project description:The current study aimed to address the hypothesis that programmed expression of key miRNAs in skeletal muscle mediates the development of insulin resistance, and consequently long-term health. We thus examined microRNA signatures in skeletal muscle of unmedicated newly diagnosed human pre-diabetics and type 2 diabetics. Skeletal muscle biopsies were obtained from the vastus lateralis from males with pre-diabetes (PD, n=5) or type 2 diabetes mellitus (T2DM, n=6) along with age and sex-matched healthy volunteers (H, n=5). Ramaciotti Centre for Genomics (UNSW, sydney, Australia)