Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:This study aims at investigating differential gene expression in human astrocytic tumours of grades I, II, III and IV. A total of 65 tumours were assessed using the Affymetrix U133A GeneChip. The study aims not only at discovering the main expression differences between astrocytic tumours of distinct histological grades but also wishes to correlate these findings with the known histopathological hallmarks of astrocytoma progression. Further, the study aims at correlating gene expression with previously obtained genomic information for several loci known to be involved in astrocytoma tumour progression. Keywords: other
Project description:This study aims at investigating differential gene expression in human astrocytic tumours of grades I, II, III and IV. A total of 65 tumours were assessed using the Affymetrix U133A GeneChip. The study aims not only at discovering the main expression differences between astrocytic tumours of distinct histological grades but also wishes to correlate these findings with the known histopathological hallmarks of astrocytoma progression. Further, the study aims at correlating gene expression with previously obtained genomic information for several loci known to be involved in astrocytoma tumour progression.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:This study aims at investigating differential gene expression in human diffusely infiltrating astrocytic tumours, grades II, III and IV. A total of 63 tumours were assessed using the Affymetrix U133A GeneChip. Samples comprised in this GEO submission are identical to those in submission GSE1993 with the exception of two pilocytic astrocytoma tumours (grade I) that have not been included. The study aims not only at discovering the main expression differences between astrocytic tumours of distinct histological grades but also wishes to correlate these findings with the known histopathological and biological hallmarks of astrocytoma progression. Further, the study aims at correlating gene expression with previously obtained genomic information for several loci known to be involved in astrocytoma tumour progression. Experiment Overall Design: A total of 63 tumours were assessed using the Affymetrix U133A GeneChip.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:This study aims at investigating differential gene expression in human diffusely infiltrating astrocytic tumours, grades II, III and IV. A total of 63 tumours were assessed using the Affymetrix U133A GeneChip. Samples comprised in this GEO submission are identical to those in submission GSE1993 with the exception of two pilocytic astrocytoma tumours (grade I) that have not been included. The study aims not only at discovering the main expression differences between astrocytic tumours of distinct histological grades but also wishes to correlate these findings with the known histopathological and biological hallmarks of astrocytoma progression. Further, the study aims at correlating gene expression with previously obtained genomic information for several loci known to be involved in astrocytoma tumour progression. Keywords: other
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6