Project description:We designed a neural network-based computational method that learns transcriptome-to-space mapping and reconstructs 3D tissue organization by learning from scRNA-seq and spatial transcriptomic data.
Project description:We designed a neural network-based computational method that learns transcriptome-to-space mapping and reconstructs 3D tissue organization by learning from scRNA-seq and spatial transcriptomic data.
Project description:The spatial arrangement of interphase chromosomes in the nucleus is important for gene expression and genome function in animals and in plants. The recently developed Hi-C technology is an efficacious method to investigate genome packing. Here we present a detailed Hi-C map of the three-dimensional genome organization of the plant Arabidopsis thaliana. We find that local chromatin packing differs from the patterns seen in animals, with kilobasepair-sized segments that have much higher intra-chromosome interaction rates than neighboring regions and which represent a dominant local structural feature of genome conformation in A. thaliana. These regions appear as positive strips on two-dimensional representations of chromatin interaction and they are enriched in epigenetic marks H3K27me3, H3.1 and H3.3. We also identify over 400 insulator-like regions. Furthermore, although topologically associating domains (TADs), which are prominent in animals, are not the dominant feature of A. thaliana genome packing, we found over 1,000 regions that have properties of TAD boundaries, and a similar number of regions similar to the interior of TADs. These insulator-like, TAD-boundary-like, and TAD-interior-like regions show strong enrichment for distinct epigenetic marks, and correlate with gene transcription levels. We conclude that epigenetic modifications, gene density, and transcriptional activity all contribute to shaping the local structure of the A. thaliana nuclear genome.
Project description:Exposure to environmental stressors is known to increase disease susceptibility in unexposed descendants in the absence of detectable genetic mutations. The mechanisms mediating environmentally-induced transgenerational disease susceptibility are poorly understood. We showed that great-great-grandsons of female mice exposed to tributyltin (TBT) throughout pregnancy and lactation were predisposed to obesity due to altered chromatin organization that subsequently biased DNA methylation and gene expression. Here we analyzed DNA methylomes and transcriptomes from tissues of animals ancestrally exposed to TBT spanning generations, sexes, ontogeny, and cell differentiation state. We found that TBT elicited concerted alterations in the expression of “chromatin organization” genes and inferred that TBT-disrupted chromatin organization might be able to self-reconstruct transgenerationally. We also found that the location of “chromatin organization” and “metabolic” genes is biased similarly in mouse and human genomes, suggesting that exposure to environmental stressors in different species could elicit similar phenotypic effects via self-reconstruction of disrupted chromatin organization.