Project description:Corals especially the reef-building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. Corals especially the reef-building species are very important to marine ecosystems. Proteomics has been used for researches on coral diseases, bleaching and responses to the environment change. In the present study, five protocols were compared for protein extraction from stony corals.
Project description:Despite their early evolutionary divergence, reef-building corals exhibit complex circadian responses to diurnal, lunar and annual changes in the conditions around them. Understanding circadian regulation in reef-building corals is, however, complicated by the presence of photosynthetic endosymbionts that have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while at the same time responding to internal physiological changes imposed by the symbiont is not clear. We explore this issue using microarray analysis to dissect genes governed directly by the circadian machinery from those responding indirectly as a consequence of changing internal oxygen tensions.
Project description:Despite their early evolutionary divergence, reef-building corals exhibit complex circadian responses to diurnal, lunar and annual changes in the conditions around them. Understanding circadian regulation in reef-building corals is, however, complicated by the presence of photosynthetic endosymbionts that have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while at the same time responding to internal physiological changes imposed by the symbiont is not clear. We explore this issue using microarray analysis to dissect genes governed directly by the circadian machinery from those responding indirectly as a consequence of changing internal oxygen tensions. Three coral colonies were sampled at 4 hr intervals during two consecutive days under an ambient light/dark (LD) cycle and under constant darkness (DD). In total 72 arrays were hybridized, as each array represented a sample from a treatment and a time point (n=3).
Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown.
Project description:Reef-building corals play an important role in the marine ecosystem, and analyzing their proteomes from a structural perspective will exert positive effects on exploring their biology. Here we integrated mass spectrometry with newly published AI systems to obtain digital structural proteomes of dominant reef-building corals.
Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown. A. millepora colonies were brought to a common garden in the reef lagoon, i.e. under the same environmental conditions. This common garden combined with acclimatization removes environmental effects on the physiology of the coral colonies. For the comparison of the two intron haplotypes, we applied a multiple dye-swap microarray design for the two groups of coral colonies (N=3 per group) defined based on the two genotypes resolved with the use of intron 4-500 (Fig. 1). To also examine the intra-haplotype variation we added a loop design nested to the above multiple dye-swap design, where three samples per colony were included. Colonies 1, 2, and 3 are of intron 4-500 haplotype 1; colonies 4, 5, and 6 are haplotype 2.
Project description:Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms’ performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light-dependent with a sessile and moddular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled with significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.
Project description:Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms’ performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light-dependent with a sessile and moddular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled with significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.
Project description:Gene expression profiling of corals exposed to control (ambient seawater) or 50 ppb copper for 24 hours Two-condition experiment, Control vs 50ppb. Biological replicates: 5 genotypes paired in control vs 50ppb, each genotype collected from different location on reef. One replicate per array.
Project description:Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms’ performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light-dependent with a sessile and moddular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled with significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts. This SuperSeries is composed of the SubSeries listed below.