Project description:The influence of GH transgenesis on liver gene expression in coho salmon was examined. Gene expression in livers of transgenic salmon on a restricted ration (R) was compared to that in livers of nontransgenic control salmon (C). Keywords: Transcript profile
Project description:Differential Gene Expression in Liver, Gill and Olfactory Tissues of Coho Salmon (Oncorhynchus kisutch) after Acclimation to Salinity.
Project description:Transcriptional impact of organophosphate pesticides chlorpyrifos and malathion and their mixture on the juvenile coho salmon olfactory system.
Project description:Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater. Saltwater acclimation requires salmonids to make various adjustments in color, shape, size, metabolism, catabolism, and osmotic and ion regulation. The molecular mechanisms underlying this transition are largely unknown. The present study acclimated coho salmon (Oncorhynchus kisutch) to four different salinities (<0.5, 8, 16, and 32 ppth) and assessed gene expression through microarray analysis of gill, liver and olfactory tissues. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory tissues are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1,616. Gills had 1,074 differentially expressed genes and olfactory tissue had 924. The difference in the number of differentially expressed genes may be due to the higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy to fuel other metabolic and osmoregulatory tissues like gills. Differentially expressed genes were tissue and salinity treatment dependent. There were no genes differentially expressed in all salinity treatments and all three tissues. Five genes were targeted for microarray confirmation by qPCR and included CCAAT/enhancer binding protein ? (CEBPB), calpain 1 (CAPN1), proto-oncogene, serine/threonine kinase (Pim1), aldolase B, fructose-bisphosphate (aldob), and complement component 3 (c3). qPCR expression profiles of these genes matched array outputs. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significant. Most terms were tissue dependent. For liver, oxygen binding and transport terms were highlighted, suggesting possible impacts on metabolism. For gills, muscle and cytoskeleton related terms were emphasized and for olfactory tissues, immune response related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosenors and signal transduction cascades. Overall this study suggests that Pacific salmonids share many salinity acclimation molecular mechanisms with other species, with a few new genes identified, and that although the three tissues shared certain underlying mechanism, many of the differentially expressed genes were tissue-specific. To assess how salinity acclimation in coho salmon (Oncorhynchus kisutch) impacted gene expression in gills, liver, and olfactory tissues.
Project description:The aim of this sequencing experiment was to make available liver tissue expression for selected fish species, northern pike (Esox lucius, Eluc), coho salmon (Oncorhynchus kisutch, Okis) and Arctic charr (Salvelinus alpinus, Salp), for comparative expression studies between the species. Samples in replicate of four were sacrificed according to protocols at each of the facilities from where samples were obtained. RNA was extracted from samples and Illumina TruSeq Stranded mRNA libraries were built. Sequencing was performed in two passes on an Illumina HiSeq2500, paired-end 125bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the NCBI genomes of the respective species using STAR and gene level counting using RSEM and NCBI gene annotation.