Project description:Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV- 3) and prostate (PC3) carcinomas. Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors when pooled tumor data were analyzed, (2) Application of MANOVA (P Pcorr corr < .05) to pooled tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries.
Project description:Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV- 3) and prostate (PC3) carcinomas. Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors when pooled tumor data were analyzed, (2) Application of MANOVA (P Pcorr corr < .05) to pooled tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries. Keywords: parallel sample
Project description:Gene expression was measured on the Affymetrix platform in primary xenografts, xenograft-derived cell lines, secondary xenografts, normal lung, and primary tumors obtained from chemotherapy naive Small Cell Lung Cancer (SCLC). The SCLC primary xenografts were serially propagated in vivo in immunodeficient mice. Cell lines were derived from each xenograft and grown for 6 months using conventional tissue culture conditions. Secondary xenografts were obtained from cell cultures by re-implantation in immunodeficient mice. Such SCLC laboratory models were analyzed along with conventional SCLC cell lines and the derivative secondary xenografts, with normal lung and primary tumors, to assess irreversible gene expression changes induced by culturing conditions. Experiment Overall Design: SCLC primary xenografts were compared to the corresponding xenograft-derived cell lines, and to the secondary xenografts established from the cell lines using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Gene expression from SCLC primary tumors was measured using the Affymetrix GeneChip Human Genome U133A 2.0 Array. 3 datasets: GSM380476-GSM380512, GSM380513-GSM380516, and GSM380517-GSM380520
Project description:Gene expression was measured on the Affymetrix platform in primary xenografts, xenograft-derived cell lines, secondary xenografts, normal lung, and primary tumors obtained from chemotherapy naive Small Cell Lung Cancer (SCLC). The SCLC primary xenografts were serially propagated in vivo in immunodeficient mice. Cell lines were derived from each xenograft and grown for 6 months using conventional tissue culture conditions. Secondary xenografts were obtained from cell cultures by re-implantation in immunodeficient mice. Such SCLC laboratory models were analyzed along with conventional SCLC cell lines and the derivative secondary xenografts, with normal lung and primary tumors, to assess irreversible gene expression changes induced by culturing conditions.
Project description:We present evidence for cytogenetic changes in two transformed ovarian surface epithelium cell lines, TOSE1 and TOSE4. hTERT-immortalised ovarian surface epithelial cell line spontaneously transformed as measured by growth in soft agar. These cells were grown on plastic, and genomic DNA was extracted and analyzed for cytogenetic changes.
Project description:In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here we explored the role of exportin 1 in NE transformation. We observed upregulated exportin 1 in lung and prostate pre-transformation adenocarcinomas. Exportin 1 was induced upregulated following genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation and extended response to targeted therapies in both lung anddifferent TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the AR inhibitor enzalutamide, and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE transformationNE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs tumors after NE transformation to standard cytotoxics. Together these data nominate exportin 1 inhibition as a novel potential therapeutic approach target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.
Project description:In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here we explored the role of exportin 1 in NE transformation. We observed upregulated exportin 1 in lung and prostate pre-transformation adenocarcinomas. Exportin 1 was induced upregulated following genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation and extended response to targeted therapies in both lung anddifferent TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the AR inhibitor enzalutamide, and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE transformationNE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs tumors after NE transformation to standard cytotoxics. Together these data nominate exportin 1 inhibition as a novel potential therapeutic approach target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.
Project description:Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, the often fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 71 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Finally, we also found that DLK1 is highly expressed in several adult cancer types including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG) and small cell lung cancer (SCLC) suggesting potential clinical benefit beyond neuroblastoma. A clinical trial has been developed for evaluating ADCT-701 in neuroendocrine tumors in adults (https://www.clinicaltrials.gov/study/NCT06041516?term=adct-701&rank=1). Therefore, comprehensive characterization of cancer surfaceomes can provide biologically relevant immunotherapy targeting strategies.
Project description:We applied ribosome profiling and RNA sequencing to examine gene expression regulation during oncogenic cell transformation. One model involves normal mammary epithelial cells (MCF10A) containing ER-Src. Treatment of such cells with tamoxifen rapidly induces Src, thereby making it possible to kinetically follow the transition between normal and transformed cells. The other model consists of three isogenic cell lines derived from primary fibroblasts in a serial manner (Hahn et al., 1999). EH cell is immortalized by overexpression of telomerase (hTERT), and exhibits normal fibroblast morphology. EL cell expresses hTERT along with both large and small T antigens of Simian virus 40, and it displays an altered morphology but is not transformed. ELR cell expresses hTERT, T antigens, and an oncogenic derivative of Ras (H-RasV12).