Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:The long-term study objective is to develop optimized nutritional therapies for surgery and test them in clinical practice. This pilot study will test a microbiome-optimization diet in colorectal cancer surgery patients. The study hypothesizes that the Bacterial Intestinal Gut Modification Around Cancer Surgery (BIG MACS) Diet will provide participants with increased microbiota accessible carbohydrates (MACs) to support the microbiome and improve outcomes.
Project description:We reported the variation in the gut microbiome diversity under the influence of Intrauterine Growth restriction or Exposure to High Fat High fructose diet followed by Intrauterine growth restriction.
Project description:It is well known that host-microbes and immunity interactions are influenced by dietary patterns, as well as daily environmental light-dark (LD) cycles that entrain circadian rhythms in the host. Emerging data has highlighted the importance of diet patterns and timing on the interaction among circadian rhythms, gut microbiome, and immunity, however, their impacts on LD cycles are less reported. Therefore, we aim to study how LD cycles regulate the homeostatic crosstalk between gut microbiome, hypothalamic and hepatic circadian clock oscillations and immunity. We hypothesized that different environmental LD cycles: (1) constant darkness, LD0/24; (2) short light, LD8/16; (3) normal LD cycle, LD12/12; (4) long light, LD16/8; and (5) constant light, LD24/0, may affect immunity and metabolism to varying degrees. Therefore, 240 mice were managed with chow diets (CD) and antibiotics treatments (ABX) under five different LD cycles for 42 days. The colonic (co) and cecum (ce) contents were obtained for studying their impacts on gut microbiome using 16S rRNA sequencing.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
2019-12-31 | GSE104913 | GEO
Project description:Analysis of Gut Microbiome in Broiler Chicken under Different Diet Supplementation
Project description:<p>We investigate the hypothesis that consistent changes in the human gut microbiome are associated with Crohn's disease, a form of inflammatory bowel disease, and that altered microbiota contributes to pathogenesis. Analysis of this problem is greatly complicated by the fact that multiple factors influence the composition of the gut microbiota, including diet, host genotype, and disease state. For example, data from us and others document a drastic impact of diet on the composition of the gut microbiome. No amount of sequencing will yield a useful picture of the role of the microbiota in disease if samples are confounded with uncontrolled variables.</p> <p>We aim to characterize the composition of the gut microbiome while controlling for diet, host genotype, and disease state. Diet is controlled by analyzing children treated for Crohn's disease by placing them on a standardized elemental diet, and by testing effects of different diets on the gut microbiome composition in adult volunteers. Genotype is analyzed by large scale SNP genotyping, which is already underway and separately funded--team member Hakon Hakonarson is currently genotyping 50 children a week at ~half a million loci each and investigating connections with inflammatory bowel disease. Clinical status is ascertained in the very large IBD practice in the UPenn/CHOP hospital system. Effects of diet, host genotype, and disease state on the gut microbiome are summarized in a multivariate model, allowing connections between microbiome and disease to be assessed free of confounding factors.</p> <p>This project is divided into four sub-studies. In the Fecal Storage Methods (FSM) study, methods of stool storage and DNA extraction are compared to examine their impact on DNA sequence analysis results. The Controlled Feeding Experiment (CaFE) addresses the effects of controlled diets on the gut microbiome. In the Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO), the effects of diet analyzed using surveys and deep sequencing of stool specimens. The fourth study, Pediatric Longitudinal Study of Elemental Diet and Stool Microbiome Composition (PLEASE), examines the effects of an elemental diet treatment on pediatric patients diagnosed with inflammatory bowel disease (IBD), particularly Crohn's disease.</p> <p> <ul> <li>Fecal Storage Methods (FSM): Cross-sectional study</li> <li>Controlled Feeding Experiment (CaFE): Controlled trial</li> <li>Cross-sectional Study of Diet and Stool Microbiome Composition (COMBO): Cross-sectional study</li> <li>Pediatric Longitudinal Study of Elemental Diet and Stool Microbiome Composition (PLEASE): Longitudinal cohort study</li> </ul> </p>
Project description:Changes in microbiome composition have been associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infused gut organ cultures with longitudinal microbiota samples collected from therapy-naïve irritable bowel syndrome (IBS) patients under low-FODMAP (fermentable Oligo-, Di-, Mono-saccharides and Polyols) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene-sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a unique pathway discovery approach for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of low-FODMAP diet and reinforce the potential feasibility of microbiome based-therapies in IBS.
Project description:Changes in microbiome composition have been associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infused gut organ cultures with longitudinal microbiota samples collected from therapy-naïve irritable bowel syndrome (IBS) patients under low-FODMAP (fermentable Oligo-, Di-, Mono-saccharides and Polyols) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene-sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a unique pathway discovery approach for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of low-FODMAP diet and reinforce the potential feasibility of microbiome based-therapies in IBS.