Project description:In order to explore the effect of black rice diet on the development of colorectal cancer in mice, we combined two types of colon cancer mouse models for intestinal transcriptome sequencing to explore the changes in host intestinal gene expression.
Project description:The harsh conditions of the Qinghai-Tibet Plateau pose significant physiological challenges to local fauna, often resulting in gastrointestinal disorders. However, Tibetan pigs have exhibited remarkable adaptability to the high-altitude stress of the Tibetan Plateau, a phenomenon that remains not fully understood in terms of their gastrointestinal microbiota. This study collected 57 gastrointestinal tract samples from Tibetan pigs (n = 6) and plain black pigs (n = 6) with comparable genetic backgrounds. Samples from the stomach, jejunum, cecum, colon, and rectum, underwent comprehensive metagenomic analysis to elucidate the gut microbiota-related adaptive mechanisms in Tibetan pigs to the extreme high-altitude environment. A predominance of Pseudomonadota was observed within gut microbiome of Tibetan pigs. Significant differences in the microbial composition were also identified across the tested gastrointestinal segments, with 18 genera and 141 species exhibiting differential abundance. Genera such as Bifidobacterium, Megasphaera, Fusobacterium, and Mitsuokella were significantly more abundant in Tibetan pigs than in their lowland counterparts, suggesting specialized adaptations. Network analysis found greater complexity and modularity in the microbiota of Tibetan pigs compared to black pigs, indicating enhanced ecological stability and adaptability. Functional analysis revealed that the Tibetan pig microbiota was particularly enriched with bacterial species involved in metabolic pathways for propionate and butyrate, key short-chain fatty acids that support energy provision under low-oxygen conditions. The enzymatic profiles of Tibetan pigs, characterized by elevated levels of 4-hydroxybutyrate dehydrogenase and glutaconyl-CoA decarboxylase, highlighted a robust fatty acid metabolism and enhanced tricarboxylic acid cycle activity. In contrast, the gut microbiome of plain black pigs showed a reliance on the succinate pathway, with a reduced butyrate metabolism and lower metabolic flexibility. Taken together, these results demonstrate the crucial role of the gastrointestinal microbiota in the adaptation of Tibetan pigs to high-altitude environments by optimizing carbohydrate metabolism and short-chain fatty acid production for efficient energy utilization. This study not only highlights the metabolic benefits conferred by the gut microbiota of Tibetan pigs in extreme environments, but also advances our understanding of the adaptive gastrointestinal mechanisms in plateau-dwelling animals. These insights lay the foundation for exploring metabolic interventions to support health and performance in high-altitude conditions.
| S-EPMC11899681 | biostudies-literature
Project description:Structural change of the gut microbial community of Black-necked crane (Grus nigricollis) in wintering period
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows. Experiment, Yellow nose vs. Black nose HanWoo
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows.
Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.