Project description:To obtain genes expression in different parts of 84k poplar stems, transcriptome sequencing was performed using Illumina Novaseq 6000 second-generation sequencing platform from Shanghai BIOZERON Co. Ltd (www.biozeron.com). Selecte three stem segments of plants REPEAT 1, 2 and 3 with good and similar growth to use: 2nd-3rd internodes (poplar stem top: PST1, PST2, PST3); 9th-10th internodes (poplar stem middle: PSM1, PSM2, PSM3); 14th-15th internodes (poplar stem bottom: PSB1, PSB2, PSB3). [Or the three repeating organisms are also called poplar A, B, C. From top to bottom, the three parts of the stem are also called stem 1, 2, 3.]
Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.
Project description:Drought is one of the most important environmental fluctuations affecting tree growth and survival. Therefore, understanding of physiological and transcriptomic responses of trees to this stress factor will make important contributions to forest health and productivity. Here, we report comparative physiological and microarray based transcriptome analysis between drought resistant (N.62.191) and drought-sensitive (N.03.368.A) black poplar genotypes under well-watered (WWP), moderate drought (MD), severe drought (SD) and post drought re-watering (PDR) conditions. In the study, sensitive genotype exhibited a drought escape strategy with lower leaf water potential, higher reactive oxygen production, complete leaf abscission and subsequent terminal shoot necrosis under drought stress. On the other hand, resistant genotype had a dehydration tolerance indicating highly delayed leaf abscission under drought and fast growing capacity during re-watering conditions. Gene ontology enrichment analysis attributed drought susceptibility of black poplar to significant up-regulation of genes functional in transcription regulation (AP2/ERF, NAC and WRKY), cell wall modification (Expansins), fatty acid metabolism (enoyl-ACP reductase, lipid transport protein particle), protein degradation (endopeptidases), ethylene synthesis (1-aminocyclopropane-1-carboxylate) and riboflavin synthesis (GTP cyclohydrolase II) under drought stress. Transcriptomic comparison indicated significant down-regulation of photosynthesis, electron transport and carbohydrate metabolism related genes under drought stress in sensitive genotype. Although, similar reduction in carbohydrate metabolism was also recorded for resistant genotype, genes related with photosynthesis and electron transport systems were not down regulated even under SD for this genotype. Resistant genotype specific up-regulation of small heat shock proteins (sHSP) and bark storage proteins revealed importance of protein protection and nitrogen remobilization under drought stress, respectively. This is the first study associating BSP production to delayed leaf abscission and drought tolerance in trees. For Microarray experiment total RNA was isolated from the leaves randomly selected from two balck poplar seedlings (two biological replicates) for resistant and sensitive genotypes at well watered period (WWP), moderate drought (MD), severe drought (SD) and post drought rewatering (PDR) periods. For each water availability regime total isolated RNA was loaded onto two Affymetrix poplar Gene Chips for each genotype. Totally 16 Affymetrix poplar GeneChips (2 genotypes × 4 water availability regimes × 2 biological replicates) were used for transcriptional analysis.
Project description:Drought is one of the most important environmental fluctuations affecting tree growth and survival. Therefore, understanding of physiological and transcriptomic responses of trees to this stress factor will make important contributions to forest health and productivity. Here, we report comparative physiological and microarray based transcriptome analysis between drought resistant (N.62.191) and drought-sensitive (N.03.368.A) black poplar genotypes under well-watered (WWP), moderate drought (MD), severe drought (SD) and post drought re-watering (PDR) conditions. In the study, sensitive genotype exhibited a drought escape strategy with lower leaf water potential, higher reactive oxygen production, complete leaf abscission and subsequent terminal shoot necrosis under drought stress. On the other hand, resistant genotype had a dehydration tolerance indicating highly delayed leaf abscission under drought and fast growing capacity during re-watering conditions. Gene ontology enrichment analysis attributed drought susceptibility of black poplar to significant up-regulation of genes functional in transcription regulation (AP2/ERF, NAC and WRKY), cell wall modification (Expansins), fatty acid metabolism (enoyl-ACP reductase, lipid transport protein particle), protein degradation (endopeptidases), ethylene synthesis (1-aminocyclopropane-1-carboxylate) and riboflavin synthesis (GTP cyclohydrolase II) under drought stress. Transcriptomic comparison indicated significant down-regulation of photosynthesis, electron transport and carbohydrate metabolism related genes under drought stress in sensitive genotype. Although, similar reduction in carbohydrate metabolism was also recorded for resistant genotype, genes related with photosynthesis and electron transport systems were not down regulated even under SD for this genotype. Resistant genotype specific up-regulation of small heat shock proteins (sHSP) and bark storage proteins revealed importance of protein protection and nitrogen remobilization under drought stress, respectively. This is the first study associating BSP production to delayed leaf abscission and drought tolerance in trees.
Project description:Poplar 84K (Populus alba x P. tremula var. glandulosa) is a fast-growing poplar hybrid. Originated in South Korea, this hybrid has been extensively cultivated in northern China. Due to the economic and ecological importance of this hybrid and high transformability, we now report the de novo sequencing and assembly of a male individual of poplar 84K using PacBio and Hi-C technologies. The final reference nuclear genome (747.5?Mb) has a contig N50 size of 1.99?Mb and a scaffold N50 size of 19.6?Mb. Complete chloroplast and mitochondrial genomes were also assembled from the sequencing data. Based on similarities to the genomes of P. alba var. pyramidalis and P. tremula, we were able to identify two subgenomes, representing 356?Mb from P. alba (subgenome A) and 354?Mb from P. tremula var. glandulosa (subgenome G). The phased assembly allowed us to detect the transcriptional bias between the two subgenomes, and we found that the subgenome from P. tremula displayed dominant expression in both 84K and another widely used hybrid, P. tremula x P. alba. This high-quality poplar 84K genome will be a valuable resource for poplar breeding and for molecular biology studies.