Project description:Goals of the Study:; 1. Assess the scope of arginine-responsive hepatic gene expression using in vitro rat models. 2. Compare normal and tumorigenic cells; 3. Identify potentially novel genes and pathways that may be subject to amino acid (arginine) regulation; Background: We previously reported that mRNA levels of the tumor associated glycoprotein amino acid transporter TA1/LAT1/ CD98 light chain arginine increase in normal hepatic cells under low arginine conditions while levels are constitutive and high in hepatic tumor cells. This suggested LAT1 amino acid response was associated with the normal hepatic phenotype and lost in carcinogenesis and may impact cell growth and survival in the tumor microenvironment. We sought to investigate how many and what types of genes are responsive to a change in arginine levels over 18 hrs using an in vitro model system. Experimental design:; Differential gene expression was determined by microarrays using samples from triplicates of normal and transformed cells subjected to 18 hour arginine-deprivation compared to controls
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation
Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.