Project description:Cancer is a heterogeneous disease, where multiple, phenotypically distinct subpopulations co-exist. Tumour evolution is a result of a complex interplay of genetic and epigenetic factors. To predict the molecular drivers of distinct cancer responses, we apply single-cell lineage tracing (scRNA-Seq of barcoded cells) on a triple-negative breast cancer model. We propose GALILEO, a framework providing lineage tracing, transcriptomic, and chromatin accessibility information simultaneously at single-cell resolution (Multiome ATAC + gene expression on barcoded cells). The combination of single-cell lineage tracing with phenotypic assays allows to link a cell state with its fate.
Project description:Cancer is a heterogeneous disease, where multiple, phenotypically distinct subpopulations co-exist. Tumour evolution is a result of a complex interplay of genetic and epigenetic factors. To predict the molecular drivers of distinct cancer responses, we apply single-cell lineage tracing (scRNA-Seq of barcoded cells) on a triple-negative breast cancer model. SUM159PT cells infected with a lentiviral barcode library (Perturb-seq Library) were sorted according to the presence of BFP signal, treated or not with paclitaxel (PTX), and then processed by scRNA-Seq or Multiome.
Project description:Cancer is a heterogeneous disease, where multiple, phenotypically distinct subpopulations co-exist. Tumour evolution is a result of a complex interplay of genetic and epigenetic factors. To predict the molecular drivers of distinct cancer responses, we apply single-cell lineage tracing (scRNA-Seq of barcoded cells) on a triple-negative breast cancer model. SUM159PT cells infected with a lentiviral barcode library (Perturb-seq Library) were sorted according to the presence of BFP signal, treated or not with paclitaxel (PTX), multiplexed with MULTI-Seq protocol, and then processed by scRNA-Seq.
Project description:SUM159PT cells were grown either in vitro (in culture) or in vivo (mouse), after which RPL10a tagged with GFP was used to perform extraction by immoprecipitation and subsequent ribosome profiling
Project description:We use NGS to assess the ability of TALE-guided DNA methyltranferases to make targeted changes to DNA methylation Targeted bisulfite sequencing of cells infected with wild-type or mutant TALE-DNMT constructs directed to the CDKN2A (p16) locus