Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, and often play critical roles in host-parasite interactions by facilitating parasite’s physiology and pathogenesis. Theileria annulata, an apicomplexan parasite, induces profound changes in host cells, leading to uncontrolled proliferation, apoptosis resistance, and increased invasiveness. In this study, we performed the comprehensive proteomic and small RNA analysis of EVs isolated from a T. annulata Kashi isolate-infected bovine lymphocyte cell line (TaXJS), B cell line (TaBC), dendritic cell line (TaDC), and from the sera of cattle before and after infection. Our label-free LC-MS/MS proteomics identified 2580 proteins, while small RNA sequencing revealed 6635 miRNAs associated with parasite development, host invasion, and immune evasion. Functional enrichment analyses recognized vesicular components involved in key pathways of the parasite-host such as ECM-receptor interaction, oxidative phosphorylation, and proton transport. These findings highlight the potential of Theileria-derived EVs in modulating host responses and their potential as therapeutic and vaccine targets.
Project description:Tropical theileriosis in a cattle disease of global economic importance, caused by the tick-borne protozoan parasite Theileria annulata. Conventional control strategies are failing to contain the disease and an attractive alternative is the use of pre-existing genetic resistance or tolerance. However, tropical theileriosis tolerant cattle are less productive than some susceptible breeds. To combine resistance and production traits requires an understanding of the mechanisms involved in resistance. Therefore, we have compared the response of monocytes derived from tolerant (Sahiwals, Bos indicus) and susceptible (Holstein-Friesians, B. taurus) cattle to in vitro infection with T. annulata. Over 150 genes exhibited breed-specific differential expression during the course of infection and nearly one third were differentially expressed in resting cells, implying that there are inherent differences between monocytes from the breeds. Fifty sequences currently only match ESTs or are unique to the library used to generate the microarray. The differential expression of a selection of genes was validated by quantitative RT-PCR, e.g. CD9, prion protein and signal-regulatory protein alpha. A large proportion of the differentially expressed genes encode proteins expressed on the plasma membrane or in the extracellular space and cell adhesion was one of the major Gene Ontology biological processes identified. We therefore hypothesise that the breed-specific tolerance of Sahiwal cattle compared to Holstein-Friesians is due to the interaction of infected cells with other immune cells, which influences the immune response generated against T. annulata infection. The BoMP microarray is available from the ARK-Genomics facility (www.ark-genomics.org).
Project description:A bovine lymphosarcoma cell line infected with Theileria annulata exhibits an irreversible reconfiguration of host cell gene expression
Project description:To understand the immune response of cows to the apicomplexan parasite Theileria annulata, we used ex vivo isolate cells derived from two infected calve : Holstein 12886 (Bos taurus), which is known to be susceptible to the disease, and Sahiwal 82H (Bos indicus), which is known to be resistant. The infected bovine macrophages of the two species with Theileria were collected and performed multiome 10X Chromium genomics scRNA-Seq.
Project description:Extracellular vesicles (EVs) are key mediators of intercellular communication, and often play critical roles in host-parasite interactions by facilitating parasite’s physiology and pathogenesis. Theileria annulata, an apicomplexan parasite, induces profound changes in host cells, leading to uncontrolled proliferation, apoptosis resistance, and increased invasiveness. In this study, we performed the comprehensive proteomic and small RNA analysis of EVs isolated from a T. annulata Kashi isolate-infected bovine lymphocyte cell line (TaXJS), B cell line (TaBC), dendritic cell line (TaDC), and from the sera of cattle before and after infection. Our label-free LC-MS/MS proteomics identified 2580 proteins, while small RNA sequencing revealed 6635 miRNAs associated with parasite development, host invasion, and immune evasion. Functional enrichment analyses recognized vesicular components involved in key pathways of the parasite-host such as ECM-receptor interaction, oxidative phosphorylation, and proton transport. These findings highlight the potential of Theileria-derived EVs in modulating host responses and their potential as therapeutic and vaccine targets.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection. Six experimental conditions with three replicates per condition. Total RNA prepared from cell cultures. BL20 (uninfected bovine lymphosarcoma cell line), BL20 4 hours post-LPS stimulation, BL20 18 hours post-LPS, TBL (T. annulata infected bovine cell line), TBL 4 hours post-LPS, TBL 18 hours post-LPS. Each hydridisation represents bovine and parasite gene expression on a single channel and 2 technical replicates of each probeset are represented on the chip.
Project description:Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumors that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced transformation and highlighted a small set of genes associated with leukocyte dissemination. CRISPR/Cas9-mediated knock-down of GZMA and RASGRP1 in macrophages attenuated for dissemination led to a regain in their dissemination in Rag2/gC mice confirming their suppressor roles in vivo. Comparing the transcriptomes of 934 human cancer cell lines to that of Theileria-transformed bovine B cells again highlighted GZMA and RASGRP1 and CRISPR-mediated overexpression of GZMA and RASGRP1 dampened the dissemination potential of human B-lymphomas. The ensemble provide evidence for a novel suppressor function in the dissemination of both T. annulata-transformed bovine leukocytes and human B-lymphomas.
Project description:This study employs comparative phosphoproteomics to investigate the changes in protein phosphorylation (post-translational modifications) induced by Theileria annulata infection in host cells. Three groups are analyzed: bovine lymphocytes infected with T. annulata, uninfected control lymphocytes, and lymphocytes treated with buparvaquone, a drug that clears the parasite. The analysis aims to identify and compare the kinase networks and signaling pathways activated in both the host and the parasite during infection.