Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
Project description:Mitigation of N2O-emissions from soils is needed to reduce climate forcing by food production. Inoculating soils with N2O-reducing bacteria would be effective, but costly and impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production may provide a low-cost and widely applicable solution. Firstly, we show that indigenous N2O-reducing bacteria in digestates grow to high levels during anaerobic enrichment under N2O. Gas kinetics and meta-omic analysis show that the N2O respiring organisms, recovered as metagenome-assembled genomes (MAGs) grow by harvesting fermentation intermediates of the methanogenic consortium. Three digestate-derived denitrifying bacteria were obtained through isolation, one of which matched the recovered MAG of a dominant Dechloromonas-affiliated N2O reducer. While the identified N2O-reducers encoded genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O-sinks in the current system. Secondly, moving towards practical application, we show that these isolates grow by aerobic respiration in digestates, and that fertilization with these enriched digestates reduces N2O emissions. This shows that the ongoing implementation of biogas production in agriculture opens a new avenue for cheap and effective reduction of N2O emissions from food production.
Project description:To investigate the effects of glucocorticoids on the gene expression profiles in zebrafish, we performed a microarray-based transcriptomic study using larvae exposed to three representative glucocoriticoids at environmentally relevant high and low concentrations. Transcriptiomic profiel of developing zebrafish larvae exposed to dexamethasone, prednisolone or triamcinolone at 50 pM to 50 nM from 3 hours post-fertilisation to 5 days post-fertilisation were analyzed using G2519F Agilent Zebrafish Whole Genome Oligo Microarray Ver3.0, 4x44K.
2017-07-01 | GSE93227 | GEO
Project description:desaminotyrosine priming effect on BMDMs