Project description:For many years, immortalized cell lines have been used as model systems for cancer research. Cell line panels were established for basic research and drug development, but did not cover the full spectrum of leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line samples were proven to be free of mycoplasma and virus contamination. Whole exome sequencing (WES) and RNA sequencing (RNA-seq) of the hundred authenticated leukemia-lymphoma cell lines were conducted with a uniform methodology to complement existing data on these publicly available cell lines. This part captures RNA-Seq. This data set will be useful for understanding the function of oncogenes and tumor suppressor genes and to develop targeted therapies.
Project description:For many years, immortalized cell lines have been used as model systems for cancer research. Cell line panels were established for basic research and drug development, but did not cover the full spectrum of leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line samples were proven to be free of mycoplasma and virus contamination. Whole exome sequencing (WES) and RNA sequencing (RNA-seq) of the hundred authenticated leukemia-lymphoma cell lines were conducted with a uniform methodology to complement existing data on these publicly available cell lines. This part captures WES. This data set will be useful for understanding the function of oncogenes and tumor suppressor genes and to develop targeted therapies.
Project description:To identify differentially expressed human and viral miRNAs across a panel of B-cell lines, including several primary effusion lymphomas (PEL). Gammaherpesvirus and host cell microRNAs (miRNAs) together modulate gene expression in normal and malignant cells. Using microRNA microarrays, we determined the expression of mature viral and host cellular miRNAs in a series of B cell tumours that include Kaposiâs Sarcoma-associated herpesvirus (KSHV) infected Primary Effusion Lymphoma (PEL) and Epstein-Barr virus (EBV) infected Burkittâs lymphoma (BL) cell lines. We show that 35 host miRNAs were constitutively expressed in all the B cell lymphomas and differences in viral miRNA expression were evident between herpesvirus positive tumour types. Furthermore, we show that in PEL, miR-221 and miR-222 expression is defective due to a lack of transcript expression rather than mutation in the miRNA encoding loci. Absence of miR-221 and miR-222 resulted in the enhanced expression of the known target gene p27 (CDKN1B) and reintroduction of miR221 in PEL reduces p27 protein expression. miRNA expression profiling of a panel of 25 B-cell line samples.
Project description:We performed poly(A)+ stranded RNA-seq of a panel of human primary or transformed cell lines (BJ, IMR90, MRC5, K562, HCT116, HeLa S3, HepG2, MCF7, HEK-293, HEK-293T, 2102Ep). In parallel, we determined the genomic location and DNA methylation levels of human full-length LINE-1 elements (L1) from the same cell lines using bs-ATLAS-seq (E-MTAB-10895). To link DNA methylation and L1 expression, we used cell pellets from the same cell culture to perform both RNA-seq and bs-ATLAS-seq.
Project description:To identify differentially expressed human and viral miRNAs across a panel of B-cell lines, including several primary effusion lymphomas (PEL). Gammaherpesvirus and host cell microRNAs (miRNAs) together modulate gene expression in normal and malignant cells. Using microRNA microarrays, we determined the expression of mature viral and host cellular miRNAs in a series of B cell tumours that include Kaposi’s Sarcoma-associated herpesvirus (KSHV) infected Primary Effusion Lymphoma (PEL) and Epstein-Barr virus (EBV) infected Burkitt’s lymphoma (BL) cell lines. We show that 35 host miRNAs were constitutively expressed in all the B cell lymphomas and differences in viral miRNA expression were evident between herpesvirus positive tumour types. Furthermore, we show that in PEL, miR-221 and miR-222 expression is defective due to a lack of transcript expression rather than mutation in the miRNA encoding loci. Absence of miR-221 and miR-222 resulted in the enhanced expression of the known target gene p27 (CDKN1B) and reintroduction of miR221 in PEL reduces p27 protein expression.