Project description:Precise classification of bacteria facilitates prediction of their ecological niche. The genus Enterobacter includes pathogens of plants and animals but also beneficial bacteria that may require reclassification. Here, we propose reclassification of Enterobacter FY-07 (FY-07), a strain that has many plant-growth-promoting traits and produces bacterial cellulose (BC), to the Kosakonia genera. To re-examine the taxonomic position of FY-07, a polyphasic approach including 16S rRNA gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, determination of DNA G + C content, average nucleotide identity based on BLAST, in silico DNA-DNA hybridization and analysis of phenotypic features was applied. This polyphasic analysis suggested that Enterobacter sp. FY-07 should be reclassified as Kosakonia oryzendophytica FY-07. In addition, the potential of FY-07 to promote plant growth was also investigated by detecting related traits and the colonization of FY-07 in rice roots.
Project description:The objective of this work was to expand the knowledge about the possible mechanisms involved in the early stages of the interaction between the diazotrophic endophytic strain Kosakonia radicincitans UYSO10 and sugarcane plants. For that, a proteomic approach was conducted in the strain UYSO10 exposed or not to sugarcane exudates. Results showed that in the presence of root exudates the UYSO10 strain senses the environment and adapts its proteome to transport and metabolize different nutrients, and to interact with the host plant. These results deepen the knowledge of the potential mechanisms involved in the early stage of plant-bacteria endophyte interaction.