Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:Lactobacillus helveticus is a rod-shaped lactic acid bacterium that is widely used in the manufacture of fermented dairy foods and for production of bioactive peptides from milk proteins. Although L. helveticus is commonly associated with milk environments, phylogenetic studies show it is closely related to an intestinal species, Lactobacillus acidophilus, which has been shown to impart probiotic health benefits to humans. This relationship has fueled a prevailing hypothesis that L. helveticus is a highly specialized derivative of L. acidophilus which has adapted to acidified whey. However, L. helveticus has also been sporadically recovered from non-dairy environments, which argues the species may not be as highly specialized as is widely believed. This study employed genome sequence analysis and comparative genome hybridizations to investigate genomic diversity among L. helveticus strains collected from cheese, whey, and whiskey malt, as well as commercial cultures used in manufacture of cheese or bioactive dairy foods. Results revealed considerable variability in gene content between some L. helveticus strains, and indicated the species should not be viewed as a strict dairy-niche specialist. In addition, comparative genomic analyses provided new insight on several industrially and ecologically important attributes of L. helveticus that may facilitate commercial strain selection.
Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin. Strains were cultured on M17. At least three independent cultures of the six strains were performed. Genomic DNA was extracted from cells grown overnight on M17 and radiolabelled cDNA were prepared and hybridized on nylon arrays. 1948 amplicons specific of Lactococcus lactis IL1403 genes were spotted twice on the array. 3 independent repetitions were performed.
Project description:Pangenome arrays contain DNA oligomers targeting several sequenced reference genomes from the same species. In microbiology these can be employed to investigate the often high genetic variability within a species by comparative genome hybridization (CGH). The biological interpretation of pangenome CGH data depends on the ability to compare strains at a functional level, particularly by comparing the presence or absence of orthologous genes. Due to the high genetic variability, available genotype-calling algorithms can not be applied to pangenome CGH data. Therefore, we have developed the algorithm PanCGH that incorporates orthology information about genes to predict the presence or absence of orthologous genes in a query organism using CGH arrays that target the genomes of sequenced representatives of a group of microorganisms. PanCGH was tested and applied in the analysis of genetic diversity among 39 Lactococcus lactis strains from three different subspecies (lactis, cremoris, hordniae) and isolated from two different niches (dairy and plant). Clustering of these strains using the presence/absence data of gene orthologs revealed a clear separation between different subspecies and reflected the niche of the strains. Keywords: CGH, CGH analysis, orthology, Lactococcus lactis
Project description:Experimental evolution is a powerful approach to study how ecological forces shape microbial genotypes and phenotypes, but to date strains were predominantly adapted to conditions specific to laboratory environments. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in the dairy environment and it is generally believed, that dairy strains originate from the plant niche. Here we investigated the adaptive process from the plant to the dairy niche and show that during the experimental evolution of a L. lactis plant isolate in milk, several mutations are selected that affect amino acid metabolism and transport. Three independently evolved strains were characterized by whole genome re-sequencing, revealing 4 to 28 mutational changes in the individual strains. Two of the adapted strains showed clearly increased acidification rates and yields in milk, and contained three identical point mutations. Transcriptome profiling and extensive phenotyping of the wild-type plant isolate compared to the evolved mutants, and a "natural" dairy isolate confirmed that major physiological changes associated with improved performance in the dairy environment relate to nitrogen metabolism. The deletion of a putative transposable element led to a significant decrease of the mutation rate in two of the adapted strains. These results specify the adaptation of a L. lactis strain isolated from mung bean sprouts to growth in milk and they demonstrate that niche-specific adaptations found in environmental microbes can be reproduced by experimental evolution.
Project description:The detection of dairy processing is pivotal to our understanding of ancient subsistence strategies. This culinary process is linked to key arguments surrounding the evolution of lactase persistence in prehistory. Despite extensive evidence indicating the presence of dairy products in ceramics in the European Neolithic, questions remain about the nature and extent of milk (and lactose) processing and consumption. In order to investigate past patterns of dairy processing, here we analyse ancient proteins identified from Late Neolithic Funnel Beaker ceramics, scrutinising the principle that curd and whey proteins partition during the production of dairy foods from milk. Our results indicate the presence of casein-rich dairy products in these vessels suggesting the creation of curd-enriched products from raw milk. Moreover, this analysis reveals the use of multiple species for their dairy products in the Late Neolithic Funnel Beaker culture, adding to a growing body of evidence that multiple taxa were exploited for dairying in the Neolithic. Alongside palaeoproteomic analysis we also apply lipid residue analysis, with discrepancies in these two approaches suggesting that effects from isotope mixing may be underestimating the frequency of milk use in prehistoric pottery, highlighting the utility of a multi-stranded approach.
Project description:The detection of dairy processing is pivotal to our understanding of ancient subsistence strategies. This culinary process is linked to key arguments surrounding the evolution of lactase persistence in prehistory. Despite extensive evidence indicating the presence of dairy products in ceramics in the European Neolithic, questions remain about the nature and extent of milk (and lactose) processing and consumption. In order to investigate past patterns of dairy processing, here we analyse ancient proteins identified from Late Neolithic Funnel Beaker ceramics, scrutinising the principle that curd and whey proteins partition during the production of dairy foods from milk. Our results indicate the presence of casein-rich dairy products in these vessels suggesting the creation of curd-enriched products from raw milk. Moreover, this analysis reveals the use of multiple species for their dairy products in the Late Neolithic Funnel Beaker culture, adding to a growing body of evidence that multiple taxa were exploited for dairying in the Neolithic. Alongside palaeoproteomic analysis we also apply lipid residue analysis, with discrepancies in these two approaches suggesting that effects from isotope mixing may be underestimating the frequency of milk use in prehistoric pottery, highlighting the utility of a multi-stranded approach.
Project description:Lactobacillus helveticus is a rod-shaped lactic acid bacterium that is widely used in the manufacture of fermented dairy foods and for production of bioactive peptides from milk proteins. Although L. helveticus is commonly associated with milk environments, phylogenetic studies show it is closely related to an intestinal species, Lactobacillus acidophilus, which has been shown to impart probiotic health benefits to humans. This relationship has fueled a prevailing hypothesis that L. helveticus is a highly specialized derivative of L. acidophilus which has adapted to acidified whey. However, L. helveticus has also been sporadically recovered from non-dairy environments, which argues the species may not be as highly specialized as is widely believed. This study employed genome sequence analysis and comparative genome hybridizations to investigate genomic diversity among L. helveticus strains collected from cheese, whey, and whiskey malt, as well as commercial cultures used in manufacture of cheese or bioactive dairy foods. Results revealed considerable variability in gene content between some L. helveticus strains, and indicated the species should not be viewed as a strict dairy-niche specialist. In addition, comparative genomic analyses provided new insight on several industrially and ecologically important attributes of L. helveticus that may facilitate commercial strain selection. 42 samples were hybridized to the microarray chip, which contains probe sequences from L. helveticus CNRZ32. CNRZ32 was also hybridized and used as the reference sample. Data from the microarray was statistically analyzed using the R software. Samples were compared to the reference (CNRZ32) to investigate genome diversity amoung L. helveticus strains,