Project description:Background & Aims: The complex interactions between diet and the microbiota that influence mucosal inflammation and inflammatory bowel disease are poorly understood. Experimental colitis models provide the opportunity to control and systematically perturb diet and the microbiota in parallel to quantify the contributions between multiple dietary ingredients and the microbiota on host physiology and colitis. Methods: To examine the interplay of diet and the gut microbiota on host health and colitis, we fed over 40 different diets with varied macronutrient sources and concentrations to specific pathogen free or germ free mice either in the context of healthy, unchallenged animals or dextran sodium sulfate colitis model. Results: Diet influenced physiology in both health and colitis across all models, with the concentration of protein and psyllium fiber having the most profound effects. Increasing dietary protein elevated gut microbial density and worsened DSS colitis severity. Depleting gut microbial density by using germ-free animals or antibiotics negated the effect of a high protein diet. Psyllium fiber influenced host physiology and attenuated colitis severity through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary protein and psyllium fiber in parallel explain most variation in gut microbial density, intestinal permeability, and DSS colitis severity, and changes in one ingredient can be offset by changes in the other. Conclusions: Our results demonstrate the importance of examining complex mixtures of nutrients to understand the role of diet in intestinal inflammation. Keywords: IBD; Diet; Microbiota; Mouse Models; Systems Biology
Project description:Antibiotics have long-lasting consequences on the gut microbiota with the potential to impact host physiology and health. However, little is known about the transgenerational impact of an antibiotic-perturbed microbiota. Here we demonstrated that adult pregnant female mice inoculated with a gut microbial community shaped by antibiotic exposure passed on their dysbiotic microbiota to their offspring. This dysbiotic microbiota remained distinct from controls for at least 5 months in the offspring without any continued exposure to antibiotics. By using IL-10 deficient mice, which are genetically susceptible to colitis, we showed mice that received an antibiotic-perturbed gut microbiota from their mothers had increased risk of colitis. Taken together, our findings indicate that the consequences of antibiotic exposure affecting the gut microbiota can extend to a second generation.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:Colorectal cancer is a leading cause of cancer-related deaths. Mutations in the innate immune receptor AIM2 are frequently identified in patients with colorectal cancer, but how AIM2 modulates colonic tumorigenesis is unknown. Here, we found that Aim2-deficient mice were hypersusceptible to colonic tumor development. Production of inflammasome-associated cytokines and other inflammatory mediators were largely intact in Aim2-deficient mice, however, intestinal stem cells were prone to uncontrolled proliferation. Aberrant Wnt signaling expanded a population of tumor-initiating stem cells in the absence of AIM2. Susceptibility of Aim2-deficient mice to colorectal tumorigenesis was enhanced by a dysbiotic gut microbiota, which was reduced by reciprocal exchange of gut microbiota with wild-type healthy mice. These findings uncover a synergy between a specific host genetic factor and gut microbiota in determining the susceptibility to colorectal cancer. Therapeutic modulation of AIM2 expression and microbiota has the potential to prevent colorectal cancer. We used microarrays to compare the transcriptome Aim2 deficent mice to wild type mice in colon tumor and colitis samples. Here were 12 mice in total, 3 for each genotype and tissue combination.
Project description:Abstract. Background: The cause of ulcerative colitis (UC) is not yet fully understood. Previous research has pointed towards a potential role for mutations in NOD2 in promoting the onset and progression of inflammatory bowel disease (IBD) by altering the microbiota of the gut. However, the relationship between toll-like receptor 4 (TLR4) and gut microbiota in IBD is not well understood. To shed light on this, the interaction between TLR4 and gut microbiota was studied using a mouse model of IBD. Methods: To examine the function of TLR4 signaling in intestinal injury repair, researchers developed Dextran Sulfate Sodium Salt (DSS)-induced colitis and injury models in both wild-type (WT) mice and TLR4 knockout (TLR4-KO) mice. To assess changes in the gut microbiota, 16S rRNA sequencing was conducted on fecal samples from both the TLR4-KO and WT enteritis mouse models. Results: The data obtained depicted a protective function of TLR4 against DSS-induced colitis. The gut microbiota composition was found to vary considerably between the WT and TLR4-KO mice groups as indicated by β-diversity analysis and operational taxonomic units (OTUs) cluster. Statistical analysis of microbial multivariate variables depicted an elevated abundance of Escherichia coli/Shigella, Gammaproteobacteria, Tenerlcutes, Deferribacteres, Enterobacteria, Rikenellaceae, and Proteobacteria in the gut microbiota of TLR4-KO mice, whereas there was a considerable reduction in Bacteroidetes at five different levels of the phylogenetic hierarchy including phylum, class, order, family, and genus in comparison with the WT control. Conclusion: TLR4 may protect intestinal epithelial cells from damage in response to DSS-induced injury by controlling the microbiota in the gut.
Project description:In the DSS-induced colitis model, the epithelial damage and resulting inflammation is restricted to the colon, with a potential influence on the microbial composition in the adjacent cecum. Several studies have reported changes of the gut microbiota in the DSS-induced colitis model and other mouse models of IBD. Furthermore, metaproteomics analysis of the gut microbiome in a mouse model of Crohn’s disease demonstrated that disease severity and location are microbiota-dependent, with clear evidence for the causal role of bacterial dysbiosis in the development of chronic ileal inflammation. We have developed a refined model of chronic DSS-induced colitis that reflects typical symptoms of human IBD without a risky body weight loss usually observed in DSS models [Hoffmann et al., submitted]. In this study, we used metaproteomics to characterize the disease-related changes in bacterial protein abundance and function in the refined model of DSS-induced colitis. To assess the structural and functional changes, we applied 16S rRNA gene sequencing and metaproteomics analysis of the intestinal microbiota in three different entities of the intestinal environment, i.e. colon mucus, colon content and cecum content.
Project description:Triclosan (TCS), an antimicrobial agent in thousands of consumer products, is a risk factor for colitis and colitis-associated colorectal cancer. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting the essential roles of specific microbial proteins in TCS toxicity. Our results define a mechanism by which intestinal microbes cause the gut toxicity of environmental chemicals and suggest a therapeutic approach to alleviate colitis and associated diseases.
Project description:We show that oxidized LA, rather than LA itself,exacerbates colitis via Toll-like receptor 4 (TLR4)- and gut microbiota-dependent mechanisms.Administration of a diet containing oxidized LA, at low human-consumption levels, increases the severity of colitis and exacerbates the development of colorectal tumorigenesis in mice.