Project description:In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm's owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl's main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species.
Project description:Monopis jussii Kaila, Mutanen, Huemer, Karsholt & Autto, sp. nov. (Lepidoptera, Tineidae) is described as a new species. It is closely related to the widespread and common M. laevigella ([Denis & Schiffermüller], 1775), but differs in its distinct COI DNA barcode sequences, four examined nuclear loci as well as details in forewing coloration and pattern. Most reared specimens of M. jussii have emerged from the nest remnants of the Boreal owl (Aegolius funereus (Linnaeus, 1758)), but also nests of the Ural owl (Strix uralensis Pallas, 1771) and the Great tit (Parus major Linnaeus, 1758) have been observed as suitable habitats. Based on the present knowledge, the new species has a boreo-montane distribution as it is recorded only from northern Europe and the Alps. Several extensive rearing experiments from Strix spp. nest remnants from southern Finland did not produce any M. jussii, but thousands of M. laevigella, suggesting that the species is lacking in the area or, more unlikely, that the nest of these owl species do not serve as good habitat for the new species. This unexpected species discovery highlights, once again, the usefulness of DNA barcoding in revealing the cryptic layers of biodiversity. To serve stability we select a neotype for Tinea laevigella [Denis & Schiffermüller], 1775, and discuss the complicated synonymy and nomenclature of this species.
Project description:Background: Birds act as intermediate or definitive hosts of cyst-forming coccidia parasites of the genus Sarcocystis Lankester, 1882. However, the spectrum of species of Sarcocystis in birds and the role of the latter in the transmission of coccidia are still incomplete for many avian species, including the Tengmalm's owl Aegolius funereus (Linnaeus, 1758). During the research on Tengmalm's owls in Finland, some fledglings were found dead and subsequently parasitologically examined. Therefore, this study is focused on the morphological and molecular description of a Sarcocystis species found in the intestine of the Tengmalm's owl and its possible role as a definitive host. Methods: Eleven fledgling owls in the Kauhava region of west-central Finland were found dead and subsequently were submitted for necropsy and parasitologically examined through the flotation-centrifugation coprological technique for the presence of oocysts/sporocysts of the genus Sarcocystis by light microscopy. Wet mounts were used for the examination of muscle samples (breast, legs, and heart). Polymerase chain reaction (PCR) and nested-PCR were carried out using primers for 18S rRNA, 28S rRNA, ITS1 region, and CO1 genes. Results: All 11 examined owls were parasitized by numerous sporocysts and oocysts in the intestinal mucosa scrapings (prevalence, 100%). Sporulated oocysts and sporocysts measured 16.34-16.96 × 11.47-12.09 μm and 11.85-13.52 × 7.77-9.25 μm, respectively. The skeletal and heart muscles were negative for sarcocysts. Sarcocystis sp. ex Aegolius funereus (hereafter Sarcocystis sp. Af) is closely related to Sarcocystis strixi in the barred owl (Strix varia Barton, 1799) from the USA and Sarcocystis sp. isolate 5 in the European shrew (Sorex araneus Linnaeus, 1758) from the Czech Republic. Phylogenetic analysis allowed determining the relationship of the herein reported Sarcocystis sp. with its congeners. Conclusions: This work provided the first and most comprehensive record on Sarcocystis from owls obtained in Finland, thus highlighting the importance of molecular data in species identification.
Project description:Begging behaviour of nestlings has been intensively studied for several decades as a key component of parent-offspring conflict. There are essentially two main theories to account for intensity of food solicitation among offspring: that intensity of begging is related to some form of scramble competition between nest mates or that it offers honest signalling of need to parents. The vast majority of studies which have addressed begging behaviour have been based on observations of, and experiments on, nestlings and have not considered begging behaviour, during the post-fledging period. Begging vocalizations in this post-fledging phase of dependence have rarely been studied, despite the importance of vocalizations as a communication method between offspring and parents, particularly for nocturnal species. We radiotracked 39 fledglings of the Tengmalm's owl (Aegolius funereus) in two years with different availability of prey: 2010 (n = 29 fledglings) and 2011 (n = 10 fledglings) and made 1320 nightly localizations in which we recorded presence or absence of begging calls. Within years, the most important measures related to the probability of vocalization were body condition at fledging, time of night, number of surviving siblings, age and weather conditions. Begging intensity increased with age in both years; however, in the year with low prey availability fledglings vocalized significantly more often. The main factor causing these differences between years was probably the different availability of prey, affecting breeding success, post-fledging behaviour, and thus also both short- and long-term needs of offspring. We believe that our results suggest honest signalling of their fledgling's need.
Project description:BackgroundOwls have been reported as definitive hosts, whereas wild small mammals (naturally and experimentally) as intermediate hosts of several species of Sarcocystis. Recently, dead fledglings were found infected by an unnamed species of Sarcocystis since its intermediate host was unknown. After collecting additional samples of owls and wild small mammals, the present study focused on elucidating the identity, potential intermediate host, and complete life cycle of the found Sarcocystis through experimentally infected rodents. The developmental stages' morphological and molecular characterizations (28S rRNA gene, ITS1 region) are presented herein.MethodsIn total, 21 Tengmalm's owl carcasses (15 nestlings, 5 fledglings, and 1 adult male) were collected in Kauhava (west-central Finland) and parasitologically examined by wet mounts. Intestinal mucosa scrapings were used to isolate oocysts/sporocysts and employed for experimental infections in dexamethasone-immunosuppressed BALB/cOlaHsd mice. Additionally, sarcocysts were searched in the skeletal muscle of 95 samples from seven wild small mammal species. All these developmental stages were molecularly characterized by the 28S rRNA gene and ITS1 region. Experimental infections were carried out by using immunosuppressed female 8-week-old BALB/cOlaHsd mice, divided into three groups: (1) water with 15 μg/mL of dexamethasone, (2) water with 30 μg/mL of dexamethasone, (3) no dexamethasone treatment. Each group consisted of four individuals. In each group, two mice were infected with 1,000 sporocysts each, and the remaining two with 10,000 sporocysts each. All mice were euthanized on specific days post-infection.ResultsThe intestinal mucosa of 11 nestlings and 5 fledglings of the Tengmalm's owl were positive for Sarcocystis funereus sp. nov. The adult male owl and all owls' breast and heart muscles were negative for Sarcocystis. Two dexamethasone-immunosuppressed BALB/cOlaHsd mice (group 2) were positive to S. funereus sp. nov. in diaphragm and leg muscles after 22- and 24-day post-infection. Some sarcocysts were found in the wild small mammals. Molecular identification at 28S rRNA revealed sequences from naturally infected Tengmalm's owls, as well as sarcocysts of dexamethasone-immunosuppressed BALB/cOlaHsd mice were 99.87-100% similar to Sarcocystis sp. isolate Af1 previously found in the Tengmalm's owl. At the ITS1 region, the S. funereus sp. nov. isolates Af2 haplotype B and Af3 haplotype A were 98.77-100% identical to Sarcocystis sp. isolate Af1. The sequences from sarcocysts of naturally infected wild small mammals were 75.23-90.30% similar at ITS1 region to those of S. funereus sp. nov.ConclusionThe morphological and molecular characterizations and phylogenetic placement of S. funereus sp. nov. are presented here for the first time and support the erection of the new species.
Project description:In altricial birds, the nestling period is an important part of the breeding phase because the juveniles may spend quite a long time in the nest, with associated high energy costs for the parents. The length of the nestling period can be variable and its duration may be influenced by both biotic and abiotic factors; however, studies of this have mostly been undertaken on passerine birds. We studied individual duration of nestling period of 98 Tengmalm's owl chicks (Aegolius funereus) at 27 nests during five breeding seasons using a camera and chip system and radio-telemetry. We found the nestlings stayed in the nest box for 27 - 38 days from hatching (mean ± SD, 32.4 ± 2.2 days). The individual duration of nestling period was negatively related to wing length, but no formally significant effect was found for body weight, sex, prey availability and/or weather conditions. The fledging sequence of individual nestlings was primarily related to hatching order; no relationship with wing length and/or other factors was found in this case. We suggest the length of wing is the most important measure of body condition and individual quality in Tengmalm's owl young determining the duration of the nestling period. Other differences from passerines (e.g., the lack of effect of weather or prey availability on nestling period) are considered likely to be due to different life-history traits, in particular different food habits and nesting sites and greater risk of nest predation among passerines.