Project description:Deep sequencing of small RNA from three closely related brassicaceae A. thaliana, A. lyrata and Capsella rubella was done to systematically analyze the evolution of MIRNA genes and their targets.
Project description:Deep sequencing of small RNA from three closely related brassicaceae A. thaliana, A. lyrata and Capsella rubella was done to systematically analyze the evolution of MIRNA genes and their targets.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Please view also related dataset GSE69077 (RNA-sequencing of heat stressed A. lyrata and A. thaliana plants).
Project description:Deep sequencing of small RNA from three closely related brassicaceae A. thaliana, A. lyrata and Capsella rubella was done to systematically analyze the evolution of MIRNA genes and their targets. Small RNA were extracted from total RNA by size fractionation and converted to DNA amplicons by serial adaptor ligation to both ends followed by RT-PCR. DNA amplicons were sequenced using an Ilumina Genome Analyzer. Resulting sequences were computationally trimmed to remove 3' adaptor sequences. Raw data files (fastq) are unavailable for two of the samples (A.lyrata_flowers-stage1-12_rep1 and A.lyrata_flowers-stage1-12_rep2).
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. To identify heat stress induced genes, we performed RNA-sequencing of rosette leaves from mock-treated, heat-stressed and heat-stressed-recoved plants of both species. Analysis of genetic element transcriptional changes in response to 6 hours of 37°C heat stress and 48 hours of recovery in Arabidopsis thaliana Col-0 and Arabidopsis lyrata MN47.
Project description:Arabidopsis thaliana and Arabidopsis lyrata are two closely related Brassicaceae species, which are used as models for plant comparative biology. They differ by lifestyle, predominant mating strategy, ecological niches and genome organization. In order to explore molecular basis of specific traits, we performed RNA-sequencing of vegetative rosettes from both species. Additionally, we sequenced apical meristems and inflorescences of A. lyrata that allow for intra-specific transcriptome comparison in several major developmental stages. Arabidopsis lyrata and Arabidopsis thaliana aerial tissues were collected from mock treated plants, total RNA isolated and poly-A RNA populations sequenced