Project description:A caffeine-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation at gradually increasing caffeine levels. The mutant strain Caf905-2 was selected at a caffeine concentration where its reference strain could not grow at all. Whole-genome transcriptomic analysis of Caf905-2 was performed with respect to its reference strain.
Project description:A Saccharomyces cerevisiae mutant with extended chronological life span was obtained by using an evolutionary engineering strategy, based on successive batch cultivation under gradually enhanced caloric restriction. The mutant strain SRM11 was selected which had about 50% longer life span than the reference strain. Whole-genome transcriptomic analysis of SRM11 with respect to the reference strain was performed to identify differences in gene expression levels between the two strains.
Project description:Effect of either FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c - also the effect of FLO11 (MUC1) overexpression in the Σ1278b genetic background The aim of this study was to (1) perform a repeat analysis (to improve statistical analysis of these data sets) similar to data submitted previously (GSE17716) and also (2) study the effect of FLO11 over-expression on the transcriptome. Background: The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and defines cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. This family of mannoproteins has been implicated in phenotypes such as flocculation and substrate adhesion as well as pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11p has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8p. We use genome wide transcript analysis to identify genes that are direct ly or indirectly regulated by Mss11p in the genetic backgrounds: Sigma1278b and S288c. Sigma 1278b is the strain historically used for the study of pseudohyphae (FLO11 expression) but we also included S288c as this strain is widely used in the research community and was used to determine the first full genome sequence (Thus correspond with SGD information). We also compare this data with transcriptome data from Sigma 1278b yeast over-expressing FLO8 to compare similarities/differences between these two signalling factors. Finally the effect of FLO11 over-expression in Sigma1278b on global transcription is studied so that we can differentiate between "direct" gene targets of Flo8p or Mss11p, and those regulated as a result by the "indirect" effect caused by modified cell wall Flo11p levels.
Project description:A Saccharomyces cerevisiae mutant with improved coniferyl aldehyde resistance was obtained by using an evolutionary engineering strategy, based on successive batch cultivation under gradually increased coniferyl aldehyde concentration. The mutant strain BH13 was selected which could grow at a coniferyl aldehyde concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of BH13 with respect to the reference strain was performed to identify differences in gene expression levels between the two strains.