Project description:Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions for bacteria. ICs generally encode promoterless genes, whose expression relies on the PC promoter within the integron platform. Cassette arrays are assumed to be operon-like structures in which expression is dependent on the distance to the Pc. This is especially relevant in large sedentary chromosomal integrons (SCIs,) like the ones in Vibrio species. We have identified 29 gene-less cassettes in 4 Vibrio SCIs, and explored whether their function could be related to regulating the transcription of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 resistance cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Additionally, one cassette had an antisense promoter capable of reducing trimethoprim resistance through transcriptional interference. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in large SCIs and their clinical importance if captured by mobile integrons.
Project description:Integrons are genetic elements that enable bacterial adaptation by collecting new genes encoded in integron cassettes (ICs) to create a reservoir of adaptive functions. These cassettes typically lack their own promoters and rely on the integron platform for their expression. Integrons, well-known for spreading antibiotic resistance genes in clinically relevant Gram-negative species, include Mobile Integrons (MIs), that transport over 170 resistance genes. In contrast, Sedentary Chromosomal Integrons (SCIs), ubiquitous in Vibrio species, are primarily found within bacterial chromosomes. However, their functions are not related to antimicrobial resistance and are largely unexplored. SCIs, typified by the Superintegron (SI) in Vibrio cholerae, represent ancient and highly variable regions in bacterial genomes. The SI is extensive, housing 179 integron cassettes, mostly with unknown functions. Although 19 cassettes encode toxin-antitoxin (TA) systems, which stabilize the array, the intricacies of the SI are challenging to study due to its size and unique integrase. To investigate the SI's impact on V. cholerae, we developed the SeqDelTA approach, enabling the gradual deletion of the SI. This deletion facilitates the use of standard genetic tools without SI interference. Our in-depth analysis of the resulting ∆SI strain, covering various aspects, demonstrated no significant alterations in V. cholerae's physiology. Despite their extended coevolution, SCIs appear to be genetically isolated from the host genome.
Project description:This study investigates the mechanisms employed by Salmonella to colonise and establish itself on fresh produce at critical timepoints following infection. We established an alfalfa infection model and compared the findings to those obtained from glass surfaces. Our research revealed dynamic changes in the pathways associated with biofilm formation over time, with distinct plant-specific and glass-specific mechanisms for biofilm formation, alongside the identification of shared genes playing pivotal roles in both contexts.
Project description:Glucocorticoid receptor (GR) is a hormone-activated, DNA-binding transcriptional regulatory factor, which regulates diverse aspects of physiology. GR recognizes specifically imperfect palindromic six base pair “half sites separated by thoursee base pair “spacers”, binding as an inverted dimer. In vivo, different GR target genes depend on different functional surfaces of GR for proper regulation, but rules dictating the relationship between sequence and utilization of distinct GR functional surfaces remain unknown.In this study, we measured changes in gene expression and genomic occupancy upon glucocorticoid treatment of isogenic cultured human cell lines expressing alleles of GR bearing differences in particular functional surfaces.
Project description:Salmonella spp. biofilms have been implicated in persistence in the environment and plant surfaces. In addition, Salmonella is able to form biofilms on the surface on cholesterol gallstones. The ability of Salmonella spp. on these surfaces is superior to biofilm formation on surfaces on glass or plastic. Thus, we hypothesized that Salmonella gene expression is specific during biofilm development on cholesterol surfaces.
Project description:Plant-based diets could be a key source of microRNAs in animals. Plant microRNAs are cross-kingdom gene expression regulators that could modulate mammalian gene expression, influencing their physiology. Therefore, it is important to identify the microRNA expression profile of plant foods in order to identify potential target genes and biological functions in the mammalian host. Next-generation sequencing was applied to identify microRNAs in RNA samples derived from nuts (walnut and almond), vegetables (spinach) and fruits (orange, apple, olive, pear, and tomato). Our data revealed that edible plant contain a large number and diverse type of microRNAs.