Project description:The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The AUXIN RESPONSE FACTOR (ARF) family of transcription factors regulates auxin-responsive gene expression and exhibit nuclear localization in regions of high auxin responsiveness. Here we show that activating ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. The intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, thus providing a mechanism for cellular competence for auxin signaling.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with auxin (indole-3-acetic acid), highlighting to the physiological function of auxin by observing early response of gene expressions in Arabidopsis seedlings.