Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:Genetic TNFAIP3 (A20) inactivation is a classical somatic lymphoma lesion and the genomic trait in haploinsufficiency of A20 (HA20). In a cohort of 33 HA20 patients, we show that heterozygous TNFAIP3 loss skews immune repertoires towards lymphocytes with classical self-reactive antigen receptors typically found in B and T cell lymphomas.
Project description:T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to canonical NF-B signaling and MALT1 protease activation. Here we show that the A20-binding inhibitor of NF-B ABIN-1 (also termed TNIP1) is modulating the suppressive function of A20 in T cells. Using quantitative mass -spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells, which similar to A20 counteracts inducible activation of human primary and Jurkat T cells. However, while A20 overexpression silences CBM complex-triggered NF-B and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. We show that the suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the initial CBM complex from the negative impact of both regulators. ABIN-1 degradation involves K48-polyubiquitination, which is promoted by A20 ZnF4/7. Further, after pro-longed T cell stimulation ABIN-1 antagonizes MALT1-catalyzed cleavage of newly synthesized A20 and thereby impairs sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.
Project description:A20 is a negative regulator of NF-κB signaling, crucial to control inflammatory responses and ensure tissue homeostasis. A20 is thought to restrict NF-κB activation both by its ubiquitin-editing activity as by non-enzymatic activities. Besides its role in NF-κB signaling, A20 also acts as a protective factor inhibiting apoptosis and necroptosis. Because of the ability of A20 to both ubiquitinate and deubiquitinate substrates and its involvement in many cellular processes, we hypothesized that deletion of A20 might generally impact on protein levels, thereby disrupting cellular processes. We performed a differential proteomics study of bone marrow derived macrophages (BMDMs) from control and myeloid-specific A20 knockout mice, both in untreated conditions and after LPS and TNF treatment, and demonstrate proteome-wide changes in protein expression upon A20 deletion. Several inflammatory proteins are up-regulated in the absence of A20, even without an inflammatory stimulus. Depending on the treatment and the time, more proteins are regulated. Together these changes may affect multiple signaling pathways disturbing tissue homeostasis and inducing (autoimmune) inflammation, as suggested by genetic studies in patients.