Project description:In the present study, we found a new walnut germplasm from wild Juglans cathayensis population, which presented white husk that did not brown. We compared the transcriptome between the fresh-cut browning (control) and white husks of the Chinese walnut using Illumina HiSeq 4000 platform
Project description:Maize husk leaf - the outer leafy layers covering the ear - modulates kernel yield and quality. Despite its importance, however, the genetic controls underlying husk leaf development remain elusive. Our previous genome-wide association study identified a single nucleotide polymorphism located in the gene RHW1 (Regulator of Husk leaf Width) that is significantly associated with husk leaf-width diversity in maize. Here, we further demonstrate that a polymorphic 18-bp InDel (insertion/deletion) variant in the 3' untranslated region of RHW1 alters its protein abundance and accounts for husk leaf width variation. RHW1 encodes a putative MYB-like transcriptional repressor. Disruption of RHW1 altered cell proliferation and resulted in a narrower husk leaf, whereas RHW1 overexpression yielded a wider husk leaf. RHW1 positively regulated the expression of ZCN4, a well-known TFL1-like protein involved in maize ear development. Dysfunction of ZCN4 reduced husk leaf width even in the context of RHW1 overexpression. The InDel variant in RHW1 is subject to selection and is associated with maize husk leaf adaption from tropical to temperate regions. Overall, our results identify that RHW1-ZCN4 regulates a pathway conferring husk leaf width variation at a very early stage of husk leaf development in maize.
2023-12-25 | GSE217926 | GEO
Project description:Bacterial Community during Composting of Mushroom Residue
Project description:Walnut (Juglans regia L.) is an important nut fruit crop mainly grown for its high nutritional and medicinal value. In walnut fruit, the pellicle is the main source of polyphenols (such as proanthocyanidins), which are natural bioactive compounds but also cause astringency and bitterness for walnut fruit consumption. However, the gene regulatory networks of phenolic biosynthetic pathways remain largely unknown in walnut pellicles. Here, we performed RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) associated with pellicle development in walnut. In this study, seven developmental stages (8-, 9-, 11-, 13-, 15-, 17-, and 19-week after pollination) of ‘Xinwen179’ pellicle tissues were harvested to conduct further transcriptome-wide profiles. Via RNA-seq, we explored several key DEGs involved in the phenolic biosynthetic pathway, such as dihydroflavonol-4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR), which are dynamically expressed at developmental stages of the walnut pellicle. Taken together, our preliminary investigation on DEGs associated with pellicle development will not only elucidate the gene regulatory networks of the phenolic biosynthetic pathway for pellicle development, but also contribute to the broad spectrum of RNA-seq data resources for further genetic improvement of walnut.
Project description:For tree crops, shortening juvenile phase is a vital strategy for early flowering that ensure to bear fruits in advance to enhance breeding efficiency. In walnut (Juglans regia L.), it usually takes 3-5 years for blooming, but the early flowering (EF) walnut can even flower in a year after planted. The juvenile phase of EF walnut is shorter than the late flowering (LF) walnut, which is more propitious to breeding efficiency. In this study, using RNA sequencing (RNA-seq) and microRNA-seq, we profiled transcriptome-wide identification of gene expression and microRNAs between EF and LF walnuts.
Project description:By analyzing the transcriptome and metabolome data of walnut infected by phompsis capsici to study the changes of differentially expressed genes and secondary metabolites,Exploring the molecular mechanism of walnut phompsis capsici.
2024-08-01 | GSE210699 | GEO
Project description:fungal diversity during composting