Project description:Three species of the mangrove tree genus Rhizophora are found in the New World and along the west coast of Africa. Of these, R. mangle is the most abundant and has a complex interbreeding relationship with the sympatric R. racemosa and R. harrisonii. The development of additional microsatellite markers would permit paternity analyses and investigation of the hybrid origin of these species. • Using an enriched library method, via hybridization with biotinylated oligonucleotides complementary to repetitive poly AG/TC, primers for 11 microsatellite markers of R. mangle were developed and characterized in populations in Pará and São Paulo (Brazil) and Florida (USA). Ten of these markers were transferable to R. racemosa and R. harrisonii. • The microsatellite markers presented here will be useful in studies of contemporary and historical gene flow between American and West African Rhizophora species.
Project description:The environmental variability at local scale results in different physiognomic types of mangrove forest. However, this variability has never been considered in studies of mangrove genetic variability. This study analyzed the genetic and morphological variability and structure of Rhizophora mangle at regional and local scales in the Yucatan Peninsula. Thirteen mangrove populations (eight scrub and five tall), located in seven sites, were sampled, and their morphological variability and relationship with the availability of phosphorus and salinity were analyzed. The diversity and genetic structure were estimated at different hierarchical levels with nine microsatellites, also Bayesian inference and Principal Coordinates Analysis were used. We found a great morphological variability of R. mangle that responded to local environmental variability and not to the precipitation gradient of the peninsula. The genetic diversity found in the peninsula was greater than that reported for other populations in Mexico and was grouped into two regions: the Gulf of Mexico and the Caribbean Sea. At a local scale, tall and scrub mangroves had significant genetic differentiation suggesting that ecological barriers promote genetic differentiation within sites. These results need to be considered in future population genetic studies and for mangrove management and conservation.
| S-EPMC6262909 | biostudies-literature
Project description:Microorganisms in soils of red mangle
| PRJNA573297 | ENA
Project description:Eukaryota in soils of red mangle
| PRJNA573299 | ENA
Project description:Eukaryotic communities in soils responsed to Red Mangle
Project description:Four new chromones, phomochromenones D-G (1-4), along with four known analogues, diaporchromone A (5), diaporchromanone C (6), diaporchromanone D (7), and phomochromenone C (8), were isolated from the culture of Phomopsis asparagi DHS-48 from Chinese mangrove Rhizophora mangle. Their structures were elucidated on the basis of comprehensive spectroscopic analysis. The absolute configurations of 1 and 4 were assigned on the basis of experimental and calculated electronic circular dichroism (ECD) data, and those of enantiomers 2 and 3 were determined by a modified Mosher's method and basic hydrolysis. To the best of our knowledge, phomochromenones D-F (1-4) possessing a 3-substituted-chroman-4-one skeleton are rarely found in natural sources. Diaporchromone A (5) showed moderate to weak immunosuppressive activity against T and/or B lymphocyte cells with IC50 of 34 μM and 117 μM.