Project description:The genetic differentiation of the northern and southern Izu lineages of the Japanese newt Cynops pyrrhogaster was investigated through their single nucleotide polymorphisms variations by multiplexed ISSR genotyping by sequencing (MIG-seq).
Project description:Newts and salamanders show remarkable diversity in antipredator behavior, developed to enhance their chemical defenses and/or aposematism. The present study reports on the antipredator behavior of newts (Cynops pyrrhogaster) in response to snakes. Newts displayed a significant amount of tail-wagging and tail-undulation in response to a contact stimulus from the snake's tongue, which is a snake-specific predator stimulus, as compared to a control stimulus (behavioral scores: tongue, 1.05 ± 0.41; control, 0.15 ± 0.15). Newts that were kept in warm temperature conditions, 20°C (at which snakes are active in nature), performed tail displays more frequently than newts kept in low-temperature conditions, 4°C (at which snakes are inactive in nature). Our results suggest that the tail displays of C. pyrrhogaster could function as an antipredator defense; they direct a snake's attention to its tail to prevent the snake from attacking more vulnerable body parts. We also discussed the reason for inter-populational variation in the tendency of newts to perform tail displays.
Project description:Here, we report details of a new infectious disease in wild-caught Japanese fire-bellied newts (Cynops pyrrhogaster), a Near Threatened species. Skin lesions consisting of numerous masses were found in the animals near Lake Biwa, Shiga Prefecture, Japan. The gross appearance of the skin lesions showed blister-, cyst-, and/or tumor-like morphology. Various sizes of skin lesions were observed on their entire body surface. Histologically, spherical basophilic cysts, including numerous spores, were observed in the dermis layer. Ultrastructural analysis indicated the presence of main bodies of flagellated zoospores within the spores. While 18s rRNA gene sequencing indicated that the skin lesions were due to dermocystid infection. To our knowledge, this is the first report of dermocystid infection in this amphibian in Japan. Further studies are needed to prevent epidemics and to establish diagnostic and treatment methods.
Project description:The male red-bellied newt (Cynops pyrrhogaster) approaches the female's cloaca prior to performing any courtship behaviour, as if he is using some released substance to gauge whether she is sexually receptive. Therefore, we investigated whether such a female sexual attractiveness pheromone exists. We found that a tripeptide with amino acid sequence Ala-Glu-Phe is secreted by the ciliary cells in the epithelium of the proximal portion of the oviduct of sexually developed newts and confirmed that this is the major active substance in water in which sexually developed female newts have been kept. This substance only attracted sexually developed male newts and acted by stimulating the vomeronasal epithelial cells. This is the first female sexual attractiveness peptide pheromone to be identified in a vertebrate.
Project description:The adult newt has the ability to regenerate the neural retina following injury, a process achieved primarily by the retinal pigment epithelium (RPE). To deliver exogenous genes to the RPE for genetic manipulation of regenerative events, we isolated the newt RPE65 promoter region by genome walking. First, we cloned the 2.8 kb RPE65 promoter from the newt, Cynops pyrrhogaster. Sequence analysis revealed several conserved regulatory elements described previously in mouse and human RPE65 promoters. Second, having previously established an I-SceI-mediated transgenic protocol for the newt, we used it here to examine the -657 bp proximal promoter of RPE65. The promoter assay used with F0 transgenic newts confirmed transgene expression of mCherry fluorescent protein in the RPE. Using bioinformatic tools and the TRANSFAC database, we identified a 340 bp CpG island located between -635 and -296 bp in the promoter; this region contains response elements for the microphthalmia-associated transcription factor known as MITF (CACGTG, CATGTG), and E-boxes (CANNTG). Sex-determining region box 9 (or SOX9) response element previously reported in the regulation of RPE genes (including RPE65) was also identified in the newt RPE65 promoter. Third, we identified DNA motif boxes in the newt RPE65 promoter that are conserved among other vertebrates. The newt RPE65 promoter is an invaluable tool for site-specific delivery of exogenous genes or genetic manipulation systems for the study of retinal regeneration in this animal.
Project description:Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20?kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF's were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide.
Project description:Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal-distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal-distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.