Project description:Amazonian understory antbirds are thought to be relatively sedentary and to have limited dispersal ability; they avoid crossing forest gaps, and even narrow roads through a forest may limit their territories. However, most evidence for sedentariness in antbirds comes from field observations and plot-based recapture of adult individuals, which do not provide evidence for lack of genetic dispersal, as this often occurs through juveniles. In this study, we used microsatellite markers and mitochondrial control-region sequences to investigate contemporary and infer historical patterns of genetic diversity and structure of the Rufous-throated Antbird (Gymnopithys rufigula) within and between two large reserves in central Amazonia. Analyses based on microsatellites suggested two genetically distinct populations and asymmetrical gene flow between them. Within a population, we found a lack of genetic spatial autocorrelation, suggesting that genotypes are randomly distributed and that G. rufigula may disperse longer distances than expected for antbirds. Analyses based on mitochondrial sequences did not recover two clear genetic clusters corresponding to the two reserves and indicated the whole population of the Rufous-throated Antbird in the region has been expanding over the last 50,000 years. Historical migration rates were low and symmetrical between the two reserves, but we found evidence for a recent unilateral increase in gene flow. Recent differentiation between individuals of the two reserves and a unilateral increase in gene flow suggest that recent urban expansion and habitat loss may be driving changes and threatening populations of Rufous-throated Antbird in central Amazonia. As ecological traits and behavioral characteristics affect patterns of gene flow, comparative studies of other species with different behavior and ecological requirements will be necessary to better understand patterns of genetic dispersal and effects of urban expansion on Amazonian understory antbirds.