Project description:Transcriptomes of mouse embryonic autopods were generated detecting expression of approximately 26179 transcripts in the developing forelimb or hindlimb autopods, representing about 58 % of the probe sets on MOE-430 A/B GeneChip. Three biological replicate array experiments were finished for each condition and MAS5.0 signal were used to do data analysis. Forty-four transcripts with expression differences higher than 2-fold were detected(T test, P<0.05), including Tbx4, Tbx5, Hoxc10 and Pitx1 which were previously shown to be differentially expressed in developing forelimb and hindlimb bud by in situ hybridization and SAGE study (Margulies 2001). RTPCR and in situ experiments confirmed several top differentially expressed genes which were newly discovered by our experiments. Vast amount of transcripts and its family members such as Bmp, Fgf, Epha, Wnt, T-box and Hox families detected to be highly expressed or differentially expressed in developing autopods, suggesting that the complexity of transcriptomes of developing autopods and dynamic differential expression and differential combinations of gene expression signals in the developing limb tissue contributes to differences in forelimb versus hindlimb patterning. The differentially expressed genes are the essential factors for morphological diversification of developing limb structures.
Project description:Transcriptomes of mouse embryonic autopods were generated detecting expression of approximately 26179 transcripts in the developing forelimb or hindlimb autopods, representing about 58 % of the probe sets on MOE-430 A/B GeneChip. Three biological replicate array experiments were finished for each condition and MAS5.0 signal were used to do data analysis. Forty-four transcripts with expression differences higher than 2-fold were detected(T test, P<0.05), including Tbx4, Tbx5, Hoxc10 and Pitx1 which were previously shown to be differentially expressed in developing forelimb and hindlimb bud by in situ hybridization and SAGE study (Margulies 2001). RTPCR and in situ experiments confirmed several top differentially expressed genes which were newly discovered by our experiments. Vast amount of transcripts and its family members such as Bmp, Fgf, Epha, Wnt, T-box and Hox families detected to be highly expressed or differentially expressed in developing autopods, suggesting that the complexity of transcriptomes of developing autopods and dynamic differential expression and differential combinations of gene expression signals in the developing limb tissue contributes to differences in forelimb versus hindlimb patterning. The differentially expressed genes are the essential factors for morphological diversification of developing limb structures. Keywords = microarray Keywords = mouse Keywords = autopod Keywords = limb Keywords = development Keywords = gene expression Keywords = transcriptome Keywords: repeat sample
Project description:The bat offers an alternative paradigm to the standard mouse and chick model of limb development as it has extremely divergent forelimbs (long digits supporting a wing) and hindlimbs (short digits and claws) due the distinct requirements of both aerial and terrestrial locomotion. We used a cross-species microarray approach to identify differentially expressed (DE) genes between the bat (Minniopterus natalensis) forelimb and hindlimb autopods at Carollia developmental stages (CS) 16 and CS17, and between the bat (CS17) and mouse (E13.5) forelimb autopods. Several DE genes were identified, including two homeobox genes, Meis2, a proximal limb-patterning gene, and Hoxd11, a gene involved in digit elongation. Both genes are significantly over-expressed in the developing bat forelimb as compared to the hindlimb and equivalently staged mouse forelimbs.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The bat offers an alternative paradigm to the standard mouse and chick model of limb development as it has extremely divergent forelimbs (long digits supporting a wing) and hindlimbs (short digits and claws) due the distinct requirements of both aerial and terrestrial locomotion. We used a cross-species microarray approach to identify differentially expressed (DE) genes between the bat (Minniopterus natalensis) forelimb and hindlimb autopods at Carollia developmental stages (CS) 16 and CS17, and between the bat (CS17) and mouse (E13.5) forelimb autopods. Several DE genes were identified, including two homeobox genes, Meis2, a proximal limb-patterning gene, and Hoxd11, a gene involved in digit elongation. Both genes are significantly over-expressed in the developing bat forelimb as compared to the hindlimb and equivalently staged mouse forelimbs. A reference design was used in this microarray experiment. A pool of left and right mouse forelimb autopods from 24 embryos was used as the reference sample. This sample was directly compared to individual CS16 and CS17 bat fore- and hindlimbs (left and right of one individual pooled) that were classified as the test conditions. Four experimental sessions were performed using an independently amplified mouse reference pool and 4 biological repeats for the bat limbs. These samples were co-hybridised to OPERON Mouse OpArray (ver. 4.0) spotted oligonucleotide slides to perform a competitive Cross-Species Hybridisation experiment. The bat aRNA (test) samples were labelled with Cy3 dye (green signal), the mouse aRNA (reference) sample was labelled with Cy5 dye (red signal).
Project description:We have used DGE-SAGE, a digital transcriptomics tool, to determine the expression profile of E14.5 mouse forelimbs and hindlimbs. The forelimb, hindlimb developmental lag combined with the analysis of these datasets allow us a better insight into the dynamics of the limb growth genetic network, in particular the characterisation of genes that are differentially expressed and are putative modulators of limb growth and or candidates for limb malformation syndromes. Conclusions: The datasets and results presented in this study allow us to extend the current knowledge of the limb development and constitute an extremely relevant resource for research into the genetics of organ growth and thus ontogenesis. DGE-SAGE expression profiles for E14.5 mouse forelimb and hindlimb
Project description:Extensive functional analyses have demonstrated that the pituitary homeodomain transcription factor Pitx1 plays a critical role in specifying hindlimb morphology in vertebrates. However, much less is known regarding the target genes and cis-regulatory elements through which Pitx1 acts. Earlier studies suggested that the hindlimb transcription factors Tbx4, HoxC10, and HoxC11 might be transcriptional targets of Pitx1, but definitive evidence for direct regulatory interactions has been lacking. Using ChIP-Seq on embryonic mouse hindlimbs, we have pinpointed the genome-wide location of Pitx1 binding sites during mouse hindlimb development and identified potential gene targets for Pitx1. We determined that Pitx1 binding is significantly enriched near genes involved in limb morphogenesis, including Tbx4, HoxC10, and HoxC11. Notably, Pitx1 is bound to the previously identified HLEA and HLEB hindlimb enhancers of the Tbx4 gene and to a newly identified Tbx2 hindlimb enhancer. Moreover, Pitx1 binding is significantly enriched on hindlimb relative to forelimb-specific cis-regulatory features that are differentially marked by H3K27ac. However, our analysis revealed that Pitx1 also strongly associates with many functionally verified limb enhancers that exhibit similar levels of activity in the embryonic mesenchyme of forelimbs and hindlimbs. We speculate that Pitx1 influences hindlimb morphology both through the activation of hindlimb specific enhancers as well as through the hindlimb-specific modulation of enhancers that are active in both sets of limbs. Embryonic hindlimb buds from 4 ICR mouse samples were used.
Project description:Hindlimb and Forelimb-specific Tbox factors integrates their mode of action with distinct Hox factors resulting in different transcriptional outcomes. In addition, hindlimb-specific Tbx4, Hoxc10 and Pitx1 act on the same platform to target common putative downstream genes for hindlimb development