Project description:Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common mutant gene in PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxic exposure (reoxygenation), as do mice with EC deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC revealed reduced Foxf1, a transcription factor with relative selectivity for lung EC. Reducing FOXF1 in control PAEC induced DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repaired DNA damage and restored angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repaired DNA damage, induced angiogenesis and reversed pulmonary hypertension.
Project description:Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a proliferative endothelial cell phenotype, inflammation and pulmonary vascular remodeling. BMPR2 loss-of-function has been linked to pathologic plexiform lesions with obliteration of distal pulmonary arteries distal pulmonary arteries BMPR2 silencing inprimary human pulmonary artery ECs (HPAECs) recapitulate important aspects of cellular dysfunction and deregulated signaling associated with PAH. Primary HPAECs were transfected with gene-specific siRNA pools targeting BMPR2 or control siRNA followed PMA or control stimulation.
Project description:BMPR2 mutation causes pulmonary arterial hypertension (PAH); ACE2 treatment can resolve established BMPR2-mediated PAH. The purpose of this study was to uncover the molecular mechanism behind this. Four groups: +/- ACE2 and +/- BMPR2 transgene, two arrays each, each array a pool of three animals.
Project description:Pulmonary arterial hypertension (PAH) is thought to be driven by dysfunction of pulmonary vascular microendothelial cells (PMVEC). Most hereditary PAH is associated with BMPR2 mutations. However, the physiologic and molecular consequences of expression of BMPR2 mutations in PMVEC are unknown.
Project description:BMPR2 mutation causes pulmonary arterial hypertension (PAH); ACE2 treatment can resolve established BMPR2-mediated PAH. The purpose of this study was to uncover the molecular mechanism behind this.
Project description:Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a proliferative endothelial cell phenotype, inflammation and pulmonary vascular remodeling. BMPR2 loss-of-function has been linked to pathologic plexiform lesions with obliteration of distal pulmonary arteries distal pulmonary arteries BMPR2 silencing inprimary human pulmonary artery ECs (HPAECs) recapitulate important aspects of cellular dysfunction and deregulated signaling associated with PAH.
Project description:Pulmonary arterial hypertension (PAH) is thought to be driven by dysfunction of pulmonary vascular microendothelial cells (PMVEC). Most hereditary PAH is associated with BMPR2 mutations. However, the physiologic and molecular consequences of expression of BMPR2 mutations in PMVEC are unknown. PMVEC were isolated from triple transgenic mice carrying the immortomouse gene, a transactivator, and either control, Bmpr2delx4+ or Bmpr2R899X mutation
Project description:BMPR2 mutation is the cause of most hereditary pulmonary arterial hypertension, but the common molecular consequence of different types of BMPR2 mutation is still not known. The goal of this study was to determine the common molecular consequences of three different classes of patient-derived BMPR2 mutation in vascular smooth muscle gene expression. Three different classes of BMPR2 mutation, wild-type BMPR2, or empty vector were stably transfected into A7R5 vascular smooth muscle cells, and expression compared.