Project description:Here We revealed the complex mechanism of viviparity in water lily. The transcriptomic signatures identified in this pathway are important basis for future breeding and research of viviparity in water lily and other plant species.
Project description:The RNA-seq was used to identify differentially regulated miRNAs between a male sterile and wild type tomato during anther development.
2015-10-01 | GSE65788 | GEO
Project description:Transcriptomic analysis of lily via RNA-seq
Project description:Anther development is a complex process, and the study of its molecular mechanism has an important impact on plant breeding. This study aims to identify microRNA (miRNA), mRNA, long non-coding RNA (lncRNA), and circular RNA (circRNA) related to anther development of Chinese cabbage, so as to construct competitive endogenous RNA (ceRNA) regulatory networks and provide valuable knowledge for the exploration of pollen development mechanism of Chinese cabbage. A total of 9055 mRNA, 585 miRNA, 1344 lncRNA, and 165 circRNA were identified as differentially expressed in the anther of Chinese cabbage compared with Mix (roots, stems and leaves) by whole-transcriptome sequencing. The anther-related ceRNA-miRNA-target gene regulatory network through miRNA targeting relationships was constructed and 450 pairs of ceRNA relationships, including 97 DEmiRNA-DEmRNA, 281 DEmiRNA-DElncRNA, and 23 DEmiRNA-DEcircRNA interactions were obtained in Chinese cabbage. The genes in the ceRNA network were enriched in the pathways including starch and sucrose metabolism, carbon metabolism, pyruvate metabolism and carbon fixation in photosynthetic organisms, plant hormone signal transduction, and RNA degradation. This study identified some important genes and their interaction lncRNAs, circRNAs, and miRNAs involved in microsporogenesis (BraA06g035480.3C), tapetum and callose layer development (BraA09g009280.3C, BraA04g028920.3C, and BraA10g022680.3C etc), pollen wall formation (BraA06g000980.3C, BraA02g023130.3C, and BraA10g029650.3C etc), and anther dehiscence (BraA10g027200.3C, BraA04g023740.3C, and BraA04g030860.3C etc). Additionally, we analyzed the promoter activity of six anther predominant expression genes, and the results showed that they were all expressed specifically in the anther of Chinese cabbage. This study lay the foundation for further research on the molecular mechanism of anther growth and development.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.