Project description:Nonalcoholic fatty liver disease (NAFLD) is a common disorder characterized by excessive hepatic fat accumulation, and potentially resulting in non-alcoholic steatohepatitis (NASH), liver cirrhosis (LC) and end-stage liver disease We used Rat Genome 230 2.0 microarray to further highlight the rat liver tissues after high-fat emulsion feeding.
Project description:The genomic landscape of hepatic tissue affected by nonalcoholic steatohepatitis (NASH) in severely obese adolescents undergoing bariatric surgery is unknown. Our purpose here was to uncover genomic profiles of obese controls, and obese cases with nonalcoholic fatty liver disease (NAFLD), borderline nonalcoholic steatohepatitis, and definite nonalcoholic steatohepatitis, in order to clarify molecular functions, biological processes, and pathways that are dysregulated in nonalcoholic steatohepatitis in the severely obese adolescent. In a prospective observational cohort study, we have intra-operatively obtained 165 liver samples; of these 67 were submited for microarray analysis. Through ANOVA, we found 8648 genes with differential regulation between the four histologies; from these, we uncovered gene signatures shared between borderline and definite nonalcoholic steatohepatitis, and gene sets with differential effects between borderline and definite.
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied data-independent acquisition proteomics to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:The current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated) or corn oil (polyunsaturated).
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied affinity-purification based shotgun proteomics for ubiquitylation to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied affinity-purification based shotgun proteomics for N-glycosylation to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied affinity-purification based shotgun proteomics for protein phosphorylation to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:Meal timing is essential in synchronization of circadian rhythms in different organ systems through clock-dependent and -independent mechanisms. The liver is a critical metabolic organ whose circadian clock and transcriptome can be readily reset by meal timing. However, it remains largely unexplored how circadian rhythms in the liver are organized in time-restricted feeding that intervenes meal timing. Here, we applied affinity-purification based shotgun proteomics for succinylation to characterize circadian features associated with day/sleep- (DRF) and night/wake (NRF)-time restricted feeding in nocturnal female mice. The transcriptomics and metabolomics datasets are public (see www.circametdb.org.cn).
Project description:Purpose: We investigated the tetrachloroethylene associated changes in kidney transcriptomes among healthy mice, nonalcoholic fatty liver disease mice, and nonalcoholic steatohepatitis mice.