Project description:Clinical kidney biopsies variably contain cortex and medulla depending on biopsy depth and angle. Therefore, biopsy composition may alter the transcriptional profile and confound conclusions drawn from differential gene expression analysis. To account for this in retrieval biopsies, we assessed differences in gene expression between paired cortex and medulla samples in n=5 human kidneys.
Project description:Improved understanding of lung transplant disease states is essential because failure rates are high, often due to chronic lung allograft dysfunction. However, histologic assessment of lung transplant transbronchial biopsies (TBBs) is difficult and often uninterpretable even with 10 pieces. All 242 single-piece TBBs produced reliable transcript measurements. Paired TBB pieces available from 12 patients showed significant similarity but also showed some sampling variance. Alveolar content, as estimated by surfactant transcript expression, was a source of sampling variance. To offset sampling variation, for analysis we selected 152 single-piece TBBs with high surfactant transcripts. Unsupervised archetypal analysis identified four idealized phenotypes (archetypes) and scored biopsies for their similarity to each: normal, T cell-mediated rejection (TCMR; T cell transcripts), antibody-mediated rejection (ABMR)-like (endothelial transcripts), and injury (macrophage transcripts). Molecular TCMR correlated with histologic TCMR. The relationship of molecular scores to histologic ABMR could not be assessed because of the paucity of ABMR in this population. Molecular assessment of single-piece TBBs can be used to classify lung transplant biopsies and correlated with rejection histology. Two or three pieces for each TBB will probably be needed to offset sampling variance.
Project description:Diagnosing lung transplant rejection currently depends on histologic assessment of transbronchial biopsies (TBB) with limited reproducibility and considerable risk of complications. Mucosal biopsies are safer but not histologically interpretable. Microarray-based diagnostic systems for TBBs and other transplants suggest such systems could assess mucosal biopsies as well.
Project description:Histologic assessment of kidney transplant biopsies relies on cortex rather than medulla, but for microarray studies, the proportion cortex in a biopsy is typically unknown and could affect the molecular readings. The present study aimed to develop a molecular estimate of proportion cortex in biopsies and examine its effect on molecular diagnoses. Microarrays from 26 kidney transplant biopsies divided into cortex and medulla components and processed separately showed that many of the most significant differences were in glomerular genes e.g. NPHS2, NPHS1, CLIC5, PTPRO, PLA2R1, PLCE1, PODXL and REN. Using NPHS2 (podocin) to estimate proportion cortex, we examined whether proportion cortex influenced molecular assessment in the Molecular Microscope Diagnostic System. In 1190 unselected kidney transplant indication biopsies (Clinicaltrials.govNCT01299168), only 11% had <50% cortex. Molecular scores for ABMR, TCMR, and injury were independent of proportion cortex. Rejection was diagnosed in many biopsies that were mostly or all medulla. Agreement in molecular diagnoses in paired cortex/medulla samples (23/26) was similar to biological replicates (32/37). We conclude that NPHS2 expression can estimate proportion cortex; that proportion cortex has little influence on molecular diagnosis of rejection, and that, although histology cannot assess medulla, rejection does occur in medulla as well as cortex.
Project description:Molecular phenotyping of biopsies affords opportunities for increased precision and improved disease classification to address the limitations of conventional histologic diagnostic systems. We applied archetypal analysis, an unsupervised method similar to cluster analysis, to microarray data from 1208 prospectively collected kidney transplant biopsies from 13 centers. Seven machine learning-generated cross-validated classifier scores per biopsy were used as input for the archetypal analysis. Six archetypes representing extreme phenotypes were generated: no rejection; T cell-mediated rejection (TCMR); three phenotypes associated with antibody-mediated rejection (ABMR) - early-stage, fully-developed, and late-stage; and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned six scores, one for each archetype, that together represent a probabilistic assessment of that biopsy based on its rejection-related molecular properties. Viewed as clusters, the archetypes were similar to existing histologic Banff categories, but there was 32% disagreement, much of it probably reflecting the “noise” in the current histologic assessment system. Graft survival was worst for fully-developed and late-stage ABMR and was better predicted by molecular archetype scores than histologic diagnoses. The results provide a system for precision molecular assessment of biopsies and a new standard for recalibrating conventional diagnostic systems. (ClinicalTrials.gov NTC1299168) We applied archetypal analysis, an unsupervised method similar to cluster analysis, to microarray data from 1208 prospectively collected kidney transplant biopsies from 13 centers. This dataset is part of the TransQST collection.
Project description:Histologic assessment of kidney transplant biopsies relies on cortex rather than medulla, but for microarray studies, the proportion cortex in a biopsy is typically unknown and could affect the molecular readings. The present study aimed to develop a molecular estimate of proportion cortex in biopsies and examine its effect on molecular diagnoses. Microarrays from 26 kidney transplant biopsies divided into cortex and medulla components and processed separately showed that many of the most significant differences were in glomerular genes e.g. NPHS2, NPHS1, CLIC5, PTPRO, PLA2R1, PLCE1, PODXL and REN. Using NPHS2 (podocin) to estimate proportion cortex, we examined whether proportion cortex influenced molecular assessment in the Molecular Microscope Diagnostic System. In 1190 unselected kidney transplant indication biopsies (Clinicaltrials.govNCT01299168), only 11% had <50% cortex. Molecular scores for ABMR, TCMR, and injury were independent of proportion cortex. Rejection was diagnosed in many biopsies that were mostly or all medulla. Agreement in molecular diagnoses in paired cortex/medulla samples (23/26) was similar to biological replicates (32/37). We conclude that NPHS2 expression can estimate proportion cortex; that proportion cortex has little influence on molecular diagnosis of rejection, and that, although histology cannot assess medulla, rejection does occur in medulla as well as cortex. We studied 26 pairs of cortex/medulla biopsies from 26 patients (4 unpaired), characterizing the clinical and histological features, and defined the mRNA phenotype with Affymetrix expression microarrays. We also studied 37 pairs of biopsies from biological replicates and 12 pairs from technical replicates. This dataset is part of the TransQST collection.
Project description:To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC=0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC=0.80), as did a molecular fibrosis classifier (AUC=0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases.
Project description:Molecular phenotyping of biopsies affords opportunities for increased precision and improved disease classification to address the limitations of conventional histologic diagnostic systems. We applied archetypal analysis, an unsupervised method similar to cluster analysis, to microarray data from 1208 prospectively collected kidney transplant biopsies from 13 centers. Seven machine learning-generated cross-validated classifier scores per biopsy were used as input for the archetypal analysis. Six archetypes representing extreme phenotypes were generated: no rejection; T cell-mediated rejection (TCMR); three phenotypes associated with antibody-mediated rejection (ABMR) - early-stage, fully-developed, and late-stage; and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned six scores, one for each archetype, that together represent a probabilistic assessment of that biopsy based on its rejection-related molecular properties. Viewed as clusters, the archetypes were similar to existing histologic Banff categories, but there was 32% disagreement, much of it probably reflecting the “noise” in the current histologic assessment system. Graft survival was worst for fully-developed and late-stage ABMR and was better predicted by molecular archetype scores than histologic diagnoses. The results provide a system for precision molecular assessment of biopsies and a new standard for recalibrating conventional diagnostic systems. (ClinicalTrials.gov NTC1299168)