Project description:This study explores the connection between changes in gene expression and the genes that determine strain survival during suspension culture, using the model eukaryotic organism, Saccharomyces cerevisiae. The Saccharomyces cerevisiae homozygous diploid deletion pool, and the BY4743 parental strain were grown for 18 hours in a rotating wall vessel, a suspension culture device optimized to minimize the delivered shear. In addition to the reduced shear conditions, the rotating wall vessels were also placed in a static position or in a shaker in order to change the amount of shear stress on the cells. Keywords: shear stress, time course
Project description:proteome-based techniques were used to compare changes of single culture fermentation and co-fermentation involving Lactobacillus plantarum Sx3 and Saccharomyces cerevisiae Sq7 in sourdough
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Here we used mass spectrometry-based proteomics technology to explore SEPs with potential cellular stress function in Saccharomyces cerevisiae. Microproteins with unique peptides were identified under six culture conditions: normal, oxidation, starvation, UV radiation, heat shock, and heat shock with starvation.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Purpose: The goal of this study was to globally characterize the transcript levels of genes in Saccharomyces cerevisiae WT and set4∆ strains during hypoxia. Using transcriptome profiling of isogenic WT and set4∆ strains grown under aerobic or 8 hours of hypoxia. We analyzed the changes in gene expression that occur during aerobic and hypoxic conditions and identified sets of upregulated and downregulated gene expression.