Project description:The goal of the study was to determine whether photodynamic oncolytic virus therapy of glioblastoma and malignant meningioma xenografts in mice alters transciptomics associated with efficacy. RNA sequencing was used from tumors treated with PBS, laser, G47delta-KillerRed, and G47delta-KillerRed and laser, which is photodynamic oncolytic virus therapy.
Project description:RATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases.
PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.
Project description:We report the application of 5-ALA ( 5-Aminolevulinic acid)-mediated photodynamic therapy on mouse brain tissue, and further explored the impact of PDT on nervous system.
Project description:This SuperSeries is composed of the following subset Series: GSE25297: Genome-wide gene expression comparison (primary central nervous system lymphoma (PCNSL) vs normal lymph node) GSE25298: Genomic aberrations in primary central nervous system lymphoma (PCNSL) Refer to individual Series
Project description:We report the application of Porfimer sodium-mediated photodynamic therapy on mouse brain endothelial cells, and further identified the impact of PDT on the normal vessel cells.
Project description:We report the application of 5-ALA ( 5-Aminolevulinic acid)-mediated photodynamic therapy on mouse brain tissue, and further explored the impact of PDT on nervous system.
Project description:Failed regeneration of myelin around neuronal axons following central nervous system damage contributes to nerve dysfunction and clinical decline in various neurological conditions, for which there is an unmet therapeutic demand. Here, we show that interaction between glial cells – astrocytes and mature myelin-forming oligodendrocytes – is a critical determinant of remyelination. Using in vivo/ ex vivo/ in vitro rodent models and human brain lesion analyses, we discover that astrocytes support the survival of regenerating oligodendrocytes, via downregulation of the Nrf2 pathway associated with increased astrocytic cholesterol biosynthesis pathway activation. Remyelination fails following sustained astrocytic Nrf2 activation in focally-lesioned mice yet is restored by either cholesterol biosynthesis/efflux stimulation, or Nrf2 inhibition using the existing therapeutic Luteolin. We identify that astrocyte-oligodendrocyte interaction regulates remyelination, and reveal a drug strategy for central nervous system regeneration centred on targeting this interaction.