Project description:To investigate the role of histone deacetylases on heterochromatin assembly, we collected H3K9me2 samples on various HDAC deletion backgrounds.
Project description:Genome wide map of heterochromatin state in fission yeast Schizosaccharomyces pombe via 4 different strains Examination of a single histone modification in 4 different fission yeast strains
Project description:Constitutive domains of repressive heterochromatin are maintained within the fission yeast genome through self-reinforcing mechanisms involving histone methylation and small RNAs. Non-coding RNAs generated from heterochromatic regions are processed into small RNAs by the RNA interference pathway, and are subject to silencing through both transcriptional and post-transcriptional mechanisms. While the pathways involved in maintenance of the repressive heterochromatin state are reasonably well understood, less is known about the requirements for its establishment. Here we describe a novel role for the post-transcriptional regulatory factor Mkt1 in establishment of heterochromatin at pericentromeres in fission yeast. Loss of Mkt1 does not affect maintenance of existing heterochromatin, but does affect its recovery following depletion, as well as de novo establishment of heterochromatin on a mini-chromosome. Pathway dissection revealed that Mkt1 is required for RNAi-mediated post-transcriptional silencing, downstream of small RNA production. Mkt1 physically associates with pericentromeric transcripts, and is additionally required for maintenance of silencing and heterochromatin at centromeres when transcriptional silencing is impaired. Our findings provide new insight into the mechanism of RNAi-mediated post-transcriptional silencing in fission yeast, and unveil an important role for post-transcriptional silencing in establishment of heterochromatin that is dispensable when full transcriptional silencing is imposed.
Project description:RNAseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNAseIII enzyme Dcr1 and are required for heterochromatin formation. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif which constrains nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted towards either compartment. This has implications for the mechanism of RNAi-mediated heterochromatin assembly and the spatial organization of RNA silencing pathways in general. Small RNA libraries from total RNA isolations of wild-type, dcr1Delta and dcr1DeltaC33 cells and subjected to high-throughput sequencing.
Project description:RNAseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNAseIII enzyme Dcr1 and are required for heterochromatin formation. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif which constrains nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted towards either compartment. This has implications for the mechanism of RNAi-mediated heterochromatin assembly and the spatial organization of RNA silencing pathways in general.
Project description:RNAseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNAseIII enzyme Dcr1 and are required for heterochromatin formation. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif which constrains nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted towards either compartment. This has implications for the mechanism of RNAi-mediated heterochromatin assembly and the spatial organization of RNA silencing pathways in general.
Project description:In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.