Project description:To investigate the mechanism by which the microalgae-yeast co-culture system promotes wastewater denitrification. We concluded that microalgae and yeast exhibit a mutually beneficial relationship in the co-culture system. Microalgae nitrogen metabolism can be influenced by both miRNA and mRNA, and the presence of yeast stimulates gene expression in microalgae.
Project description:Although it is well established the seasonal effect of the photoperiod over the transcriptional expression patterns in plants, this effect has not been studied in microalgae. Here we fill the gap using the model microalgae Ostreococcus tauri.
Project description:Nitrogen starvation is an efficient environmental pressure used to increase lipid accumulation and oil droplet formation in microalgal cells. Various studies focused on metabolic changes occurring in microalgae in nitrogen starvation conditions, but the mechanisms at the basis of these changes are not completely understood. Between microalgae, green algae, with more than 7000 species growing in a variety of habitats, have been frequently studied for energy purposes, but also as source of bioactive extracts/compounds. In this study, de novo transcriptome of the green algae Tetraselmis suecica has been performed in order to (1) deeply study its response to nitrogen starvation, (2) to look for enzymes with antioxidant capacity and for polyketide synthases (PKSs), (3) if present, to evaluate if nutrient starvation can influence their expression levels.
Project description:This study intends to explore the clinicopathological characteristics and survival prognosis of locally recurrent colorectal cancer patients with different treatment modes by retrospectively analyzing the medical records of locally recurrent colorectal cancer patients who received hospitalization in our center. Transcriptome sequencing and public databases were used to screen for molecular markers related to locally recurrent colorectal cancer and to explore molecular markers’ regulatory role in the progression of locally recurrent colorectal cancer.
| 116635 | ecrin-mdr-crc
Project description:Eukaryotic transcriptome data from microalgae
Project description:Phytoplankton lipids, such as microalgae lipids, are important compounds of increasing interest in bioenergy, food, pharmacy, aquaculture and ecology for their high molecular diversity. There is a taxonomically diverse lipid response under P stress with unresolved questions related to the diversified mechanism behind the lipid responses. A marine microalgae with high EPA content was isolated, named Nannochloropsis sp. PJ12. We reveal a mechanism of phosphorus-induced lipid class remodeling in Nannochloropsis sp. PJ12 based on highly corresponding transcriptome and lipidome data. Phosphorus- deprivation leads to the rapid reduction of phospholipids (PL) and synthesis of the betaine lipids (BL). Phosphorus-complement recovers the content of PL and BL to the original level. The changes are mediated mainly by a glycerophosphoryldiester phosphodiesterases on the transcriptome level. To adapt to low phospholipids, the transcription levels of gene encoding P transporter were upregulated. When Nannochloropsis sp. PJ12 was once again under phosphorus-complement, some of gene encoding P transporter continue to increase on the transcription levels. The novel phospholipid-remodeling scheme opens new avenues for metabolic engineering of lipid composition in algae.
Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.