Project description:Membrane fractions from Chara australis internodal cells were prepared by differential centrifugation. Chara cells were incubated in normal light/dark cycles or in the dark to obtain chaasome-enriched and depleted sample, respectively. Additionally, acidic and alkaline bands of individual Chara cells were separated for membrane preparations, too.
Project description:The green algal Botryococcus braunii (Chlorophyte) is known for accumulating high levels of hydrocarbons that are a useful alternative to fossil fuels. B. braunii is categorized into three groups based on types of their accumulated hydrocarbons: alkadiene/triene in race A, botryococcenes in race B, and lycopadiene in race L. Transcriptomic studies in race A and race B have discovered tremendous information related to the genes encoding proteins involved in hydrocarbon biosynthesis. However, transcriptome of race L has not been reported. In this study, we report a transcriptome of race L B. braunii AC768 through the de novo assembly using Hiseq platform. Our analyses indicate that photosynthesis and protein biosynthesis are the most abundantly transcribed in actively growing race L B. braunii. We show that the transcriptome of race L shares similar amounts (~20%) of mutual best-hits with that of race A or race B. Sequence homologous analyses indicate that enzymes involved in squalene and phytoene biosynthesis are well separated into geranyl-diphosphate synthase, farnesyl-diphosphate synthase, geranylgeranyl-diphosphate synthase, phytoene synthase, and squalene synthase. Both B. braunii specific enzymes botryococcene synthase SSL3 and lycopaoctaene synthase LOS are found to form distinctive subgroups in the group of squalene synthase. One of the ESTs in AC768 transcriptome that falls into the subgroup with LOS and shares >88% identity with that of LOS. Together, our results show that SSL and LOS are unique to race B and race L B. braunii subspecies, respectively. We propose that phytoene synthase in race L shares higher homolog to squalene synthase than phytoene synthase in other algae.
Project description:NODAL signalling is required to maintain pluripotency in human embryonic stem cells, by maintaining expression of transcription factor NANOG. We treated human blastocysts with NODAL signalling inhibitor A8301 and performed RNAseq on whole embryos to determine if NANOG expression and pluripotency in human embryos requires NODAL signalling activity.