Project description:Mice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. ( Keywords: Transcription factors, Sp3, knockout mice, cardiac malformations, E12.5
Project description:Investigation of the binding behaviour of Sp1, Sp2, Sp3 and NF-ya, NF-yb and NF-yc in mouse embryonic fibroblasts and of Sp1, Sp2 and Sp3 in HEK-293 cells reveals distinct binding of the seemingly similar transcription factors Sp1/3 and Sp2.
Project description:SP1 and SP3 have been reported to play an critical role in the pregression of tumors. In order to elucidate the molecular mechanism of SP1 and SP3 in colorectal cancer, RNA-seq analysis was performed on SP1 and SP3 knockdown and control HCT116 cells.
Project description:Members of the Sp family of transcription factors regulate gene expression via binding GC boxes within promoter regions. Unlike Sp1, which stimulates transcription, the closely related Sp3 can either repress or activate gene expression and is required for perinatal survival in mice. Here we use RNAseq and cellular phenotyping to show how Sp3 regulates murine fetal cell differentiation and proliferation. Homozygous Sp3-/- mice were smaller than WT and Sp+/- littermates, died soon after birth, and had abnormal lung morphogenesis. RNAseq of Sp3-/- fetal lung mesenchymal cells identified alterations in extracellular matrix production, developmental signaling pathways, and myofibroblast/lipofibroblast differentiation. The lungs of Sp3-/- mice contained multiple structural defects, with abnormal endothelial cell morphology, lack of elastic fiber formation, and accumulation of lipid droplets within mesenchymal lipofibroblasts. Sp3-/- cells and mice also displayed cell cycle arrest, with accumulation in G0/G1 and reduced expression of numerous cell cycle regulators including Ccne1. These data detail the global impact of Sp3 on in vivo mouse gene expression and development. Development • Accepted manuscript lung mesenchymal cells identified alterations in extracellular matrix production, developmental signaling pathways, and myofibroblast/lipofibroblast differentiation. The lungs of Sp3-/- mice contained multiple structural defects, with abnormal endothelial cell morphology, lack of elastic fiber formation, and accumulation of lipid droplets within mesenchymal lipofibroblasts. Sp3-/- cells and mice also displayed cell cycle arrest, with accumulation in G0/G1 and reduced expression of numerous cell cycle regulators including Ccne1. These data detail the global impact of Sp3 on in vivo mouse gene expression and development.
Project description:Mice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. ( Experiment Overall Design: Hearts were dissected from E12.5 wildtype (n=3) and Sp3 knockout (n=3) fetuses. Total RNA was isolated from individual hearts; 5μg was used for labelling and hybridization to 430 2.0 Gene Chips (a total of 6).
Project description:To investigate the function of transcription factors Sp1 and Sp3 in the regulation of endothelial functions, we established tamoxifen-induced endothelial Sp1/Sp3 knockout mice and isolated the MLECs We then performed gene expression profiling analysis using data obtained from RNA-seq of MLECs from endothelial Sp1/Sp3 knockout mice and their control mice
Project description:The histone deacetylase HDAC2, which negatively regulates neuronal plasticity and synaptic gene expression, is upregulated both in Alzheimer’s disease (AD) patients and mouse models (Graff et al., 2012). Therapeutics targeting HDAC2 are speculated to be a promising avenue for ameliorating AD related cognitive impairment. However, attempts to generate HDAC2-specific inhibitors have not been successful. Here, we take a novel approach utilizing integrative genomics to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown, and that Sp3 facilitated the recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3 binding domain fully restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance synaptic and cognitive function, without affecting HDAC2 function in other processes.
Project description:The draft genome of L. sativa (lettuce) cv. Tizian was sequenced in two Illumina sequencing runs, mate pair and shotgun. This entry contains the RAW sequencing data.