Project description:Fire disturbances are becoming more common, more intense, and further-reaching across the globe, with consequences for ecosystem functioning. Importantly, fire can have strong effects on the soil microbiome, including community and functional changes after fire, but surprisingly little is known regarding the role of soil fire legacy in shaping responses to recent fire. To address this gap, we conducted a manipulative field experiment administering fire across 32 soils with varying fire legacies, including combinations of 1-7 historic fires and 1-33 years since most recent fire. We analyzed soil metatranscriptomes, determining for the first time how fire and fire legacy interactively affect metabolically-active soil taxa, the microbial regulation of important carbon (C), nitrogen (N) and phosphorus (P) cycling, expression of carbohydrate-cycling enzyme pathways, and functional gene co-expression networks. Experimental fire strongly downregulated fungal activity while upregulating many bacterial and archaeal phyla. Further, fire decreased soil capacity for microbial C and N cycling and P transport, and drastically rewired functional gene co-expression. Perhaps most importantly, we highlight a novel role of soil fire legacy in regulation of microbial C, N, and P responses to recent fire. We observed a greater number of functional genes responsive to the interactive effects of fire and fire legacy than those affected solely by recent fire, indicating that many functional genes respond to fire only under certain fire legacy contexts. Therefore, without incorporating fire legacy of soils, studies will miss important ways that fire shapes microbial roles in ecosystem functioning. Finally, we showed that fire caused significant downregulation of carbon metabolism and nutrient cycling genes in microbiomes under abnormal soil fire histories, producing a novel warning for the future: human manipulation of fire legacies, either indirectly through global change-induced fire intensification or directly through fire suppression, can negatively impact soil microbiome functional responses to new fires.
Project description:Members of the bacterial phylum Spirochaetes are primarily studied for their commensal and pathogenic roles in animal hosts. However, Spirochaetes are also frequently detected in anoxic hydrocarbon-contaminated environments but their ecological role in such ecosystems has so far remained unclear. Here we provide a functional trait to these frequently detected organisms with an example of a sulfate-reducing, naphthalene-degrading enrichment culture consisting of a sulfate-reducing deltaproteobacterium Desulfobacterium naphthalenivorans and a novel spirochete Rectinema cohabitans. Using a combination of genomic, proteomic, and physiological studies we show that R. cohabitans grows by fermentation of organic compounds derived from biomass from dead cells (necromass). It recycles the derived electrons in the form of H2 to the sulfate-reducing D. naphthalenivorans, thereby supporting naphthalene degradation and forming a simple microbial loop. We provide metagenomic evidence that equivalent associations between Spirochaetes and hydrocarbon-degrading microorganisms are of general importance in hydrocarbon- and organohalide-contaminated ecosystems. We propose that environmental Spirochaetes form a critical component of a microbial loop central to nutrient cycling in subsurface environments. This emphasizes the importance of necromass and H2-cycling in highly toxic contaminated subsurface habitats such as hydrocarbon-polluted aquifers.
Project description:This trial studies how well cycling works in preventing colorectal cancer in participants with Lynch syndrome. Exercise such as cycling may reduce colorectal cancer risk in participants with Lynch syndrome.
Project description:Tracing autotroph and heterotroph photosynthetic catalytic carbon cycling within a microbial mat, confirming biomass 13C incorporation into extracellular polymeric substances through proteomics.
Project description:Oxygen-stratified lakes are typical for the boreal zone and also a major source of greenhouse gas emissions in the region. Due to shallow light penetration, restricting the growth of phototrophic organisms, and large allochthonous organic carbon inputs from the catchment area, the lake metabolism is expected to be dominated by heterotrophic organisms. In this study, we test this assumption and show that the potential for autotrophic carbon fixation and internal carbon cycling is high throughout the water column. Further, we show that during the summer stratification carbon fixation can exceed respiration in a boreal lake even below the euphotic zone. Metagenome-assembled genomes and 16S profiling of a vertical transect of the lake revealed multiple organisms in an oxygen-depleted compartment belonging to novel or poorly characterized phyla. Many of these organisms were chemolithotrophic, potentially deriving their energy from reactions related to sulfur, iron, and nitrogen transformations. The community, as well as the functions, was stratified along the redox gradient. The autotrophic potential in the lake metagenome below the oxygenic zone was high, pointing toward a need for revising our concepts of internal carbon cycling in boreal lakes. Further, the importance of chemolithoautotrophy for the internal carbon cycling suggests that many predicted climate change-associated fluctuations in the physical properties of the lake, such as altered mixing patterns, likely have consequences for the whole-lake metabolism even beyond the impact to the phototrophic community.IMPORTANCE Autotrophic organisms at the base of the food web are the only life form capable of turning inorganic carbon into the organic form, facilitating the survival of all other organisms. In certain environments, the autotrophic production is limited by environmental conditions and the food web is supported by external carbon inputs. One such environment is stratified boreal lakes, which are one of the biggest natural sources of greenhouse gas emissions in the boreal region. Thus, carbon cycling in these habitats is of utmost importance for the future climate. Here, we demonstrate a high potential for internal carbon cycling via phototrophic and novel chemolithotrophic organisms in the anoxic, poorly illuminated layers of a boreal lake. Our results significantly increase our knowledge on the microbial communities and their metabolic potential in oxygen-depleted freshwaters and help to understand and predict how climate change-induced alterations could impact the lake carbon dynamics.