Project description:To identify putative novel specific targets of miR-203-3p, we overexpressed this miRNAs in primary keratinocytes using a synthetic mimic (pre-miR-203a-3p) or a synthetic “negative” control mimic (pre-miR-ctrl). RNA samples were harvested 30 hours post-transfection and 3 independent experiments were carried out.
Project description:HaCaT human keratinocytes were transfected with pre-miR-483-3p or pre-miR-NC. RNA samples were harvested 48h post-transfection and mRNA profiles were determined with pan genomic arrays. Two biological replicates were performed for each comparison. Data were normalized using a dye-swap method.
Project description:We found that miR-199a-3p expression is decreased in cSCC biopsies and cell lines compared to normal skin biopsies or normal keratinocytes cell. To understand the role lost expression of miR-199a-3p might have in tumorigenesis of keratinocytes, we aimed to fine possible biochemical pathways and possible targets of miR-199a-3p in cSCC. In order do so, we overexpressed miR-199a-3p in cSCC and used microarrays to find global gene expression affected by miR-199a-3p.
Project description:MicroRNAs, small endogenous non-coding RNAs, are involved in the regulation of epidermal homeostasis. Among them, miR-203 was the most described and expressed in human epidermis, promoting keratinocyte differentiation by repressing genes involved in proliferation. To identify other miRNAs involved in this process, the miRNomes of normal human keratinocytes cultured in monolayer (2D) or in 3D reconstructed skin were compared. Besides miR-203, mR-141 was one of the most expressed miRNAs in 3D culture and was overexpressed in 3D vs 2D condition, i.e. during keratinocyte differentiation. Functional experiments revealed that, mostly expressed in the basal layer, miR-141 decreased keratinocyte proliferation and clonogenicity while promoting their differentiation. Target prediction algorithm coupled with transcriptomic data of keratinocytes overexpressing miR-141, as well as 3’UTR luciferase assays enabled to evidence CCND2 mRNA as a direct target of miR-141, leading to its down regulation by miR-141 overexpression. Finally, CCND2 silencing decreased keratinocyte proliferation and induced their differentiation, revealing that miR-141 action was mediated by CCND2. MiR-141 features were also compared with miR-203 in parallel experiments. Although miR-141 displayed similar functions to the ones of miR-203, it exhibited different localization and targets, suggesting a joint participation of miR-141 and miR-203 to engage and maintain keratinocyte towards differentiation, respectively.
Project description:To identify putative novel specific targets of miR-199-5p, miR-199a-3p and miR-214-3p, we overexpressed these miRNAs in human MRC5 pulmonary fibroblasts (CCL-171) using synthetic pre-miRNAs or a synthetic “negative” pre-miRNA control (miR-Neg). RNA samples were harvested 48 hours post-transfection and 3 independent experiments were carried out.
Project description:Primary cilium serves as a cellular M-bM-^@M-^\antennaM-bM-^@M-^] to sense environmental signals. Ciliogenesis requires the removal of CP110 to convert the mother centriole into the basal body. Actin dynamics is also critical for cilia formation. How these distinct processes are properly regulated remains unknown. Here we show that miR-129-3p, a microRNA conserved in the vertebrates, controlled cilia assembly by down-regulating both CP110 and four proteins critical for actin dynamics, Arp2, Toca1, abLIM1, and abLIM3. Consistently, blocking miR-129-3p repressed cilia formation in cultured mammalian cells, whereas its overexpression potently induced ciliogenesis in proliferating cells and extraordinary cilia elongation. Moreover, inhibition of miR-129-3p in zebrafish embryos suppressed cilia assembly in the KupfferM-bM-^@M-^Ys vesicle and pronephric duct, leading to developmental abnormalities including curved body, pericardial oedema, and randomised left-right patterning. Our results thus unravel a novel mechanism that orchestrates both the centriole-to-basal body transition and subsequent cilia assembly via microRNA-mediated posttranscriptional regulations. We want to find the targets of miR-129-3p by overexpressing miR-129-3p oligo or control oligo in hTERT-RPE1 cells. Through microarray analysis we could check the downregulated genes and these genes might be the targets of miR-129-3p. RPE1 cells were transfected with control (Ctrl) or miR-129-3p (M129) oligo for 72h, and harvested for RNA extraction and hybridization on Affymetrix microarrays. Two samples: RPE1-Ctrl, RPE1-M129
Project description:Primary cilium serves as a cellular “antenna” to sense environmental signals. Ciliogenesis requires the removal of CP110 to convert the mother centriole into the basal body. Actin dynamics is also critical for cilia formation. How these distinct processes are properly regulated remains unknown. Here we show that miR-129-3p, a microRNA conserved in the vertebrates, controlled cilia assembly by down-regulating both CP110 and four proteins critical for actin dynamics, Arp2, Toca1, abLIM1, and abLIM3. Consistently, blocking miR-129-3p repressed cilia formation in cultured mammalian cells, whereas its overexpression potently induced ciliogenesis in proliferating cells and extraordinary cilia elongation. Moreover, inhibition of miR-129-3p in zebrafish embryos suppressed cilia assembly in the Kupffer’s vesicle and pronephric duct, leading to developmental abnormalities including curved body, pericardial oedema, and randomised left-right patterning. Our results thus unravel a novel mechanism that orchestrates both the centriole-to-basal body transition and subsequent cilia assembly via microRNA-mediated posttranscriptional regulations. We want to find the targets of miR-129-3p by overexpressing miR-129-3p oligo or control oligo in hTERT-RPE1 cells. Through microarray analysis we could check the downregulated genes and these genes might be the targets of miR-129-3p.
Project description:This is a prospective-retrospective study to determine if the expression of the miRNA’s miR-31-3p and miR-31-5p are prognostic of patient outcomes or predictive of the benefit from anti-EGFR therapy in stage III Colon Cancer. The present study will utilize FFPE tumor samples collected from patients enrolled in the PETACC-8 study conducted by the Fédération Francophone de Cancérologie Digestive (FFCD). This phase 3 clinical trial prospectively randomized fully resected stage III colon cancer patients to receive adjuvant treatment with either FOLFOX-4 plus cetuximab or FLOFOX-4 alone.
Project description:Overexpression of miR-127-3p in LN229 glioblastoma cells promotes their migration and invasion in vitro and in vivo in xenograft models. We used microarrays to detail the global programme of gene expression in miR-127-3p overexpression LN229 cells compared with mock overexpression LN229 cells MiR-127-3p overexpression LN229 cells and and mock overexpression LN229 cells were cultured in DMEM cell culture media for RNA extraction and hybridization on Affymetrix microarrays. We sought to obtain the genes regulated by miR-127-3p in glioblastoma cell lines.