Project description:To investigate the role of ChREBPα in the development and progression of non-alcholic fatty liver disease, we investigated how Chrebpα deficiency or overexpression affect the development and progression of NAFLD.
Project description:Purpose: The goals of this study were to identify preferential gene expression signatures that are unique to hepatic macrophages in high-fat diet -induced non-alcoholic fatty liver disease. Methods and results: Wild-type and Casp11-/- mice were treated with high fat and normal chow diet for a period of 12 weeks. Hepatic macrophages from liver were isolated to generate mRNA transcription. Conclusion: Our study represents detailed analysis of caspase-11 in regulating hepatic macrophages in high-fat diet -induced non-alcoholic fatty liver disease.
Project description:To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages. Five-week-old C3H/HeN female mice (CLEA, Japan) were acclimated to the maintenance condition (25°C, 8:00-20:00 day / 20:00-8:00 night cycle and 35~40 % humidity), fed a CE-2 diet (CLEA, Japan), and given water ad libitum for one week. Each group of mice (n=4 for wild type mice analysis and n=3 for CAR decficient mice analysis) was fed Lieber's isocaloric diet (Oriental yeast, Japan) containing water, containing ethanol, containing ethanol and ellagic acid (Fluka Biochemika, Switzerland), or containing ethanol and trans-resveratrol (Sigma, USA) (Supplementary Table 1) for one week at 10:00 ad libitum. Then, the mice were fed each diet at 12 g / day for four weeks (Supplementary Fig. 1A). The approximate intake of each polyphenol was 50 mg / kg body weight / day. At 10:00 of the final day of the experimental period, the animals were anesthetized by diethyl ether, sacrificed by cervial fracture, and the heart blood, and the liver were collected.
Project description:This study aimed to investigate the effect and underlying mechanism of Didymin on lipid metabolic disturbance in rats with non-alcoholic fatty liver disease (NAFLD). Rats were administrated with a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by different dose Didymin treatment for further 8 weeks.
Project description:This study aimed to investigate the effect and underlying mechanism of Smilax china L. Saponins (SCS) on lipid metabolic disturbance in rats with non-alcoholic fatty liver disease (NAFLD). Rats were administrated with a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for further 8 weeks.
Project description:In this study, we explored the role of macrophage scavenger receptor 1 (MSR1) in the progression of non-alcoholic fatty liver disease. Mice lacking Msr1 proved to be protected against high fat-cholesterol diet (HFD)-induced metabolic disorder, showing fewer hepatic lipid-laden foamy macrophages, less hepatic inflammation and changed lipid metabolism.
Project description:Alcohol induced fatty liver cause a dangerous health problem and is the major cause of morbidity and mortality worldwide. Garlic (Allium sativum) is documented to possess anti-fatty liver properties. However the exact molecular mechanisms are unknown. The main aim of this experiment is to elucidate the underlying pathways through which garlic ameliorates alcohol induced fatty liver. Dially disulfide and garlic oil were the garlic compounds used in this study. Leiber DeCarli ethanol liquid diet was to induce fatty liver in C57BL/6 mice model. Also the expression impaired by alcohol induced fatty liver is another aim of this study. Leiber-Decarli ethanol diet was used to induce fatty liver in male C57BL/6 mice (n=12). For control, Lieber-DeCarli liquid control diet was fed to mice (n=4). The control mice were pair-fed to the ethanol mice. After adaptation, the ethanol fed mice were divided into three groups viz. alcohol (n=4), dially disulfide [DADS] (n=4) and garlic oil [GO] (n=4). The study started with the administration of DADS (15 mg/kg bw) or GO (50 mg/kg bw) mixed in 0.1 ml olive oil through gavage. For the control and alcohol groups, same amount of olive oil (0.1 ml) was gavaged. The mice were gavaged daily for 4 weeks. The mice were euthanized by CO2 and blood was collected by cardiac puncture. Liver, kidney, spleen, lungs and hearts were collected and their weights recorded. A portion of liver was snap frozen in liquid nitrogen (200 mg) for RNA extraction.
Project description:Non-alcoholic fatty liver (NAFL) has the potential to progress to non-alcoholic steatohepatitis (NASH) or to promote type 2 diabetes mellitus (T2DM). However, NASH and T2DM do not always develop coordinately. We established rat models of NAFL, NASH, and NAFL + T2DM to recapitulate different phenotypes associated with NAFLD and its progression. Microarrays were used to identify hepatic gene expression changes in each of these models. The goal is to identify a predictor of different NAFLD progressions. Non-alcoholic fatty liver disease (NAFLD) is recognized as a low-grade systemic inflammatory state with both hepatic and extra-hepatic manifestations. We aimed to identify common key regulators and adaptive pathways in different NAFLD phenotypes. NAFL, NASH and NAFL+T2DM rat models were used to represent simple fatty liver, fatty liver with severe hepatic manifestations, and fatty liver with severe metabolic manifestations, respectively. We applied microarray analysis to characterize the key regulators and adaptive pathways in different NAFLD phenotypes. There are 12 samples in our study which belonged to 4 groups, and each group contains 3 different samples.