Project description:These studies were designed to examine the transcription of Listeria monocytogenes strains 10403S and LO28 during intracellular replication in mammalian macrophages.
Project description:These studies were designed to examine the transcription of Listeria monocytogenes strains 10403S and LO28 during intracellular replication in mammalian macrophages. Duplicate WT Listeria monocytogenes (strains 10403S and LO28) were used to infect mouse bone marrow-derived macrophages (BMMs). Bacterial RNA was harvested at 4 hours post-infection.
Project description:Comparison of Listeria monocytogenes transcripts in different strains (EGD wild-type versus EGD-e wild-type, EGD-e PrfA* versus EGD-e wild-type).
Project description:Comparison of Listeria monocytogenes transcripts in different strains (EGD wild-type versus EGD-e wild-type, EGD-e PrfA* versus EGD-e wild-type).
Project description:The formation of Listeria monocytogenes biofilms contributes to persistent contamination in food processing facilities. A microarray comparison of L. monocytogenes between the transcriptome of the strong biofilm forming strain (Bfms) Scott A and the weak biofilm forming (Bfmw) strain F2365 was conducted to identify genes potentially involved in biofilm formation. Among 951 genes with significant difference in expression between the two strains, a GntR-family response regulator encoding gene (LMOf2365_0414), designated lbrA, was found to be highly expressed in Scott A relative to F2365. A Scott A lbrA-deletion mutant, designated AW3, formed biofilm to a much lesser extent as compared to the parent strain by a rapid attachment assay and scanning electron microscopy. Complementation with lbrA from Scott A restored the Bfms phenotype in the AW3 derivative. A second microarray assessment using the lbrA deletion mutant AW3 and the wild type Scott A revealed a total of 304 genes with expression significantly different between the two strains, indicating the potential regulatory role of LbrA in L. monocytogenes. A cloned copy of Scott A lbrA was unable to confer enhanced biofilm forming potential in F2365, suggesting that additional factors contributed to weak biofilm formation by F2365. Findings from the study may lead to new strategies to modulate biofilm formation. Two comparisons were performed between 1) strong biofilm former Listeria monocytogenes strain ScottA versus weak biofilm former Listeria monocytogenes strain F2365; 2) Listeria monocytogenes ScottA LbrA deletion mutant strain versus Listeria monocytogenes ScottA. Four replicates were loaded for the first comparison and two replicates were loaded for the second comparison.
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator CtsR, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DctsR log phase cells were compared to both wt and ictsR-mcsA log phase cells grown with 0.5mM IPTG to identify CtsR-dependent genes.We identified 62 CtsR-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression either between ΔctsR and wt or between ΔctsR and ictsR-mcsA. Keywords: Listeria monocytogenes, CtsR regulon, log phase
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator HrcA, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DhrcA stationary phase cells were compared to wt to identify hrcA-dependent genes. We identified 61 HrcA-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression between ΔhrcA and wt. Combined with microarray analysis, Hidden Markov Model searches show HrcA directly repress at least 8 genes. Keywords: Listeria monocytogenes, HrcA regulon, stationary phase
Project description:Listeria monocytogenes strain 10403S has been studied extensively for stress response activity toward multiple stressors (acid, osmotic, cold, high temperature, etc.) as well as multiple stress regulons (SigB, CtsR, HrcA, etc.). Here we aimed to determine the transcriptional response of Listeria monocytogenes in early log phase towards the strong oxidative stress imposed by ClO2. The elucidation of such a response allows for further a more completel understanding of the mechanism of inactivation by sanitizers, specifically ClO2.
Project description:To characterize regulons of alternative sigma factor SigH, SigL, and SigC in Listeria monocytogenes, in-frame mutant strains were created in the 10403S background. Regulons controlled by these 3 alternative sigma factors were characterized by whole-genome microarrays. The L. monocytogenes 10403S wild type and sigma factor null mutation strains were grown at 37 °C to stationary phase (defined in this study as growth to OD600 = 1.0, followed by incubation for an additional 3 h) prior to RNA isolation. Transcriptional profiles of 10403S wild type were compared to those of null mutation strain. In addition to stationary phase condition, SigC regulon was further characterized using heat stress (cultures grown to log phase at OD600 = 0.4, 37 °C and then exposed to heat at 55 °C for 10 min) and a condition with IPTG-inducible expression of sigC (sigC gene is placed under Pspac promoter using pLIV2 vector in wild type 10403S background). Under these conditions, expression profiles were compared between (i) wild type and sigC null mutant for heat stress and (ii) IPTG-inducible sigC strain and sigC null mutant, respectively. Using adjusted P < 0.05 and ≥ 1.5 fold change as cutoff values, microarray analyses identified 169 SigH-dependent, 51 SigL-dependent, and 3 SigC-dependent genes. Keywords: Listeria monocytogenes, alternative sigma factor, SigH, SigL, SigC