Project description:Transcriptional profiling of Arabidopsis rossette leaves comparing WT Col-0 with a transgenic line overexpressing AhDGR gene from Amaranthus hypochondriacus.
Project description:Transcriptional profiling of Arabidopsis rossette leaves comparing WT Col-0 with a transgenic line overexpressing Ah24 gene from Amaranthus hypochondriacus.
Project description:We studied the microbial community-based degradation of keratin, a recalcitrant biological material, by four well-characterized synergistic soil isolates, which have previously been shown to display synergistic interactions during biofilm formation; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. We observed enhanced keratin weight loss in cultures with X. retroflexus, both in dual and four-species co-cultures, as compared to expected keratin degradation by X. retroflexus alone. To unravel the degradation shotgun-proteomics was performed on the secretome of all culture types including X. retroflexus.
Project description:Transcriptional profiling of Arabidopsis rossette leaves comparing WT Col-0 with a transgenic line overexpressing AhERF or AhDOF genes from Amaranthus hypochondriacus under different conditions.
Project description:Transcriptional profiling of Arabidopsis rossette leaves comparing WT Col-0 with a transgenic lines overexpressing AhNF-YC gene from Amaranthus hypochondriacus in three different conditions.
Project description:Resistance to synthetic auxin herbicides was recently confirmed in a population of Amaranthus powellii. Following field studies, an RNA-seq experiment was devised to determine the mechanism of resistance to MCPA (a synthetic auxin herbicide) by comparing the level of gene expression of genes in the auxin pathway between the resistant and a susceptible population of Amaranthus powellii. The results identified several differentially expressed genes (DEGs) in the auxin pathway that were significantly downregulated in the resistant samples indicating that the resistance mechanism may be linked to a target site modification.