Project description:Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the transcriptome data, little difference was observed between the biofilm cells of B. cereus ATCC 14579 and ATCC 10987. Different responses between biofilm and planktonic cells could be identified using transcriptome analysis. Biofilm formation seemed to cause a shift in metabolism with up- or down-regulation of genes involved in different metabolic pathways. Genes involved in motility were down-regulated. No clear up-regulation related to capsular or extracellular polysaccharides was observed. Sporulation was observed in biofilm cells using microscopy, which was corroborated with up-regulation of genes involved in sporulation in biofilm cells. The results obtained in this study provide insight in general and strain specific behavior of B. cereus cells in multicellular communities.
Project description:Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin AS-48 challenges on vegetative cells of Bacillus cereus ATCC 14579 by use of transcriptome analysis.
Project description:The Bacillus cereus ATCC 14579 alternative σ factor σZ and its putative regulon have been characterized. σZ shows overall similarity with ECF σ factors and sigZ constitutes an operon together with asfZ encoding its putative anti-σ factor. Expression analysis revealed sigZ to be induced by an array of stresses, including exposure to ethanol, alkaline pH and heat shock, and a typical promoter binding site for the sigZ-operon was identified by 5’RACE. Phenotypic characterization of B. cereus ATCC 14579 and its sigZ-deletion strain revealed diminished growth performance and sporulation capacity. The σZ-regulon was successfully established by transcriptome analysis of a nisin inducible sigZ-overexpression strain. Overexpression of sigZ was shown to affect expression of 42 genes, including 33 genes encoding proteins located in the extracytoplasm. The identified σZ regulon contained genes encoding proteins situated in the extracytoplasm involved in cell surface modifications and transport. The regulation of genes encoding cell surface modification proteins implies σZ to be involved in the regulation of interaction of B. cereus ATCC 14579 with its environments, which includes human intestinal cells, possibly influencing its virulence status. Keywords: Comparative transcriptome study