Project description:Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host?pathogen relationships. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Chronic infection of the human stomach with Helicobacter pylori leads to a variety of pathologic sequelae including peptic ulcer and gastric cancer, resulting in significant human morbidity and mortality. Several genes have been implicated in disease related to H. pylori infection including the vacuolating cytotoxin and the cag pathogenicity island. Other factors important for establishment and maintenance of infection include urease enzyme production, motility, iron uptake and stress response. We utilized a C57BL/6 mouse infection model to query a collection of 2400 transposon mutants in two different bacterial strain backgrounds for H. pylori genetic loci contributing to colonization of the stomach. Microarray based tracking of transposon mutants allowed us to monitor the behavior of transposon insertions in 758 different gene loci. Of the loci measured 223 (29%) had a predicted colonization defect. These include previously described H. pylori virulence genes, genes implicated in virulence in other pathogenic bacteria and 81 hypothetical proteins. We have retested 10 previously uncharacterized candidate colonization gene loci by making independent null alleles and confirmed their colonization phenotype using competition experiments and determination of the dose required for 50% infection. Of the genetic loci retested, 60% have strain specific colonization defects while 40% had phenotypes in both strain backgrounds for infection, highlighting the profound effect of H. pylori strain variation on the pathogenic potential of this organism. This SuperSeries is composed of the SubSeries listed below.
Project description:In this study, we tested the hypothesis that high salt concentrations might alter gene expression in H. pylori. Analysis here provides into the role that salt may play in H. pylori pathogenesis. . Keywords: comparison of salt reponsive gene expression, dose response
Project description:To identify dysregulated miRNA(s) upon infection with H. pylori during different pre-malignant and malignant stages of gastric cancer in a mouse model
Project description:The genome of the gastric pathogen Helicobacter pylori harbors a remarkably low number of regulatory genes, including three and five open reading frames encoding two-component histidine kinases and response regulators, respectively, which are putatively involved in transcriptional regulation. Inactivation of the response regulator gene hp1021 resulted in a severe growth defect, as indicated by a small-colony phenotype. Recently we found that phosphorylation of the receiver domain HP1021 is not needed for its response regulator function and may not occur at all. No target genes have been identified so far. In this study we define the HP1021-dependent regulon consisting of 79 genes (51 activated, 28 repressed) by global transcriptional profiling of an HP1021-deficient H. pylori mutant. Keywords: Identification of an HP1021-Regulon