Project description:Background and aimsWild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations.MethodsThe studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation.Key resultsThe results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed.ConclusionsKnowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources.
Project description:Oleaster (Olea europaea L. subsp. europaea var. sylvestris) is the ancestor of cultivated olive (Olea europaea L. subsp. europaea var. europaea) and it is spread through the whole Mediterranean Basin, showing an overlapping distribution with cultivated olive trees. Climate change and new emerging diseases are expected to severely affect the cultivations of olive in the future. Oleaster presents a higher genetic variability compared to the cultivated olive and some wild trees were found adapted to particularly harsh conditions; therefore, the role of oleaster in the future of olive cultivation may be crucial. Despite the great potential, only recently the need to deeply characterize and adequately preserve the wild olive resources drew the attention of researchers. In this review, we summarized the most important morphological and genetic studies performed on oleaster trees collected in different countries of the Mediterranean Basin. Moreover, we reviewed the strategies introduced so far to preserve and manage the oleaster germplasm collections, giving a future perspective on their role in facing the future agricultural challenges posed by climatic changes and new emerging diseases.
Project description:Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called "Acebuche" and its fruit "Acebuchina". The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box-Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.
Project description:In the face of climate change, water deficit and increasing soil salinity pose an even greater challenge to olive cultivation in the Mediterranean basin. Due to its tolerance to abiotic stresses, wild olive (Olea europaea subsp. europaea var. sylvestris) presents a good candidate in breeding climate-resilient olive varieties. In this study, the early response of the native Croatian wild olive genotype (WOG) to salinity was evaluated and compared with that of well-known cultivars (cv.) Leccino and Koroneiki. Potted olive plants were exposed either to 150 mM NaCl or 300 mM mannitol for 3 weeks to distinguish between the osmotic and ionic components of salt stress. To determine the impact of the plant age on salinity, 1-, 2-, and 3-year-old WOG plants were used in the study. The growth parameters of both the cultivars and WOG of different ages decreased in response to the mannitol treatment. In contrast to cv. Leccino, the NaCl treatment did not significantly affect the growth of cv. Koroneiki or WOG of any age. The contents of Na+ and Cl- were considerably higher in the salt-treated WOG, regardless of age, compared with the cultivars. However, while both treatments significantly reduced the K+ content of cv. Koroneiki, that nutrient was not significantly affected in either cv. Leccino or WOG. Unlike the cultivars and older WOG, the NaCl treatment caused a significant decline of photosynthetic pigments in the 1-year-old WOG. The cultivars and WOG of different ages experienced a similar drop in the chlorophyll a content under the isotonic mannitol treatment. The absence of lipid peroxidation, modulation of superoxide dismutase, and guaiacol peroxidase activity were noted in all WOG ages under both stressors. These data suggest that WOG resilience to salinity is associated with its large leaf capacity for Na+ and Cl- accumulation, K+ retention, and its adaptable antioxidative mechanisms. The results are promising with regard to obtaining a new olive cultivar with better resilience to soil salinity.
Project description:The wild-type of olive tree, Olea europaea var Sylvestris or oleaster, is the ancestor of the cultivated olive tree. Wild-type olive oil is considered to be more nutritious with increased antioxidant activity compared to the common cultivated type (Olea europaea L. var Europaea). This has led to the wild-type of olive oil having a much higher financial value. Thus, wild olive oil is one of the most susceptible agricultural food products to adulteration with other olive oils of lower nutritional and economical value. As cultivated and wild-type olives have similar phenotypes, there is a need to establish analytical methods to distinguish the two plant species. In this work, a new method has been developed which is able to distinguish Olea europaea var Sylvestris (wild-type olive) from Olea europaea L. var Europaea (cultivated olive). The method is based, for the first time, on the genotyping, by allele-specific, real-time PCR, of a single nucleotide polymorphism (SNP) present in the two olives' chloroplastic genomes. With the proposed method, we were able to detect as little as 1% content of the wild-type olive in binary DNA mixtures of the two olive species.
Project description:A comparative transcriptomics approach was used as a tool to unravel gene regulatory networks underlying salinity response in olive trees by simulating as much as possible olive growing conditions in the field. Specifically, we investigated the genotype-dependent differences in the transcriptome response of two olive cultivars, a salt tolerant and a salt sensitive. A 135 day long comparative salinity experiment was conducted using one year old trees exposed to NaCl stress for 90 days followed by 45 days of post-stress period. Total RNA was extracted from the root samples after 15, 45 and 90 days of NaCl-treated and un-treated olive trees as well as after 15 and 45 days of post-treatment period and used for microarray hybridizations using a loop design. Hierarchical clustering of differentially expressed transcripts revealed two major, distinct clusters for each cultivar. Despite the limited number of probe set, transcriptional regulatory networks were constructed for the salt-tolerant and salt-sensitive cultivar. The comparison of the salt responsive transcriptional regulatory networks in olive with those reported for Arabidopsis suggests that a tree species might respond in a similar to Arabidopsis way at the transcriptome level under salinity stress.